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ABSTRACT

Application of Chaos Methods to Helicopter Vibration
Reduction Using Higher Harmonic Control

by

Lcdr Martinus M. Sariqul-Klijn, USN

Chaos is a discipline used in understanding complex
nonlinear dynamics. The geometric and topological
methods of Chaos theory are applied, for the first time,
to the study of flight test data. Data analyzed is from
the McDonnell Douglas OH-6A Higher Harmonic Control (HHC)
test aircraft. HHC is an active control system used to
suppress helicopter vibrations. Some of the first
practical applications of Chaos methods are demonstrated
with the HHC data.

Although helicopter vibrations are mostly periodic,
evidence of chaos was found. The presence of a strange
attractor was shown by computing a positive Lyapunov
exponent and computing a non-integer fractal correlation
dimension. Also, a broad band Fourier spectrum and a
well defined attractor in pseudo phase space are
observed.

A limit exists to HHC vibration reduction due to the
presence of chaos. A new technique based on a
relationship between the Chacs methods (the Poincare
section and vVan der Pol plane) and the vibration
anplitude and phase was discovered. This newly
introduced technique results in the following: 1) it
gives the limits of HHC vibration reduction, 2) it
allows rapid determination of best phase for a HHC
controller, 3) it determines the minimum HHC controller
requirement for any helicopter from a few minutes
duration of flight test data (for the OH-6A, a scheduled
gain controller for HHC appears to be adequate for steady
level flight), 4) it shows that the HHC controller
transfer matrix is linear and repeatable when the
vibrations are defined in the "Rotor Time Domain" and
that the matrix is nonlinear and nonrepeatable when the
vibrations are defined in the "Clock Time Domain."

This technique will reduce future HHC flight test
requirements. Further, the technique does not require
the helicopter to be equipped with HHC. These methods
may be applicable to other vibration control and flight
testing problems.
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I. INTRODUCTION

A. BACKGROUND

Chaos is a motion which is sensitive to initial
conditions. Figure 1-1 depicts chaotic motion. From
nearly the same starting point, trajectories which
represent the motion of a dynamical system grow farther
and farther apart until all resemblance disappears. The
study of chaotic motion like this has inspired new
methods of analysis. Some methods, like the phase plane,
have thcir origin as far back as 1904 with Henri
Poincare. Other methods, like the pseudo phase space,
were discovered as recently as 1980 by Floris Takens.

The concept of chaos and these geometric methods have
revolutionized the investigation of problems in nonlinear
dynamics.

The accurate prediction of helicopter vibrations from
first principles has been the goal of helicopter dynamic
analysis. NASA’s joint-industry DAMVIBS program [Ref
1.1] shows encouraging progress. Presently, one way to
get accurate vibration data is from a flight survey of an
instrumented helicopter. The literature shows that only
time domain and frequency domain spectral analysis

methods are used to study flight test data.




The work in this dissertation is devoted to the
analysis of flight test data using the geometric and
topological methods of chaos, and is believed to be the
first such engineering application of the science of
chaos. The data analyzed is obtained from the McDonnell
Douglas Helicopter Company. They provided the flight
test data from the McDonnell Douglas/NASA/Army OH-6A
Higher Harmonic Control (HHC) test helicopter. HHC is an
active control systcm used to suppress helicopter
vibrations. This OH-6A helicopter demonstrated the first
successful application of HHC in a series of flight tests
during 1982 to 1984. The aircraft was heavily
instrumented and the results were digitized and stored on
magnetic tapes. McDonnell Douglas retrieved tnese
magnetic tapes from archives. They then translated them
from a flight test pulse code modulation (PCM) format to
a ASCII format, readable by a Digital VAX series
computer. This data was provided to the Naval
P~stgraduate School for in-depth analysis.

During the course of this research, a comprehensive
Fortran program was developed to analyze experimental
data using a wide variety of classical as well as the new
chaos methods. These new geometric and topological
methods are completely independent of all preconceived
helicopter models. Only actual measured data are used.

The program includes classical time and frequency domain




analysis, including statistical estimates. The geometric
and topological methods allow analysis in 2-D and 3-D
phase-space, toroidal phase space, Poincare sections
(time strobed and space strobed), and the Van der Pol
plane. Further, options to characterize attractors by
computation of the fractal correlatior dimension and
Lyapunov exponents are provided.

Scne of the first practical applications of the chaos
methods are demons*rated using the HHC data. Many of the
ideas presented here may be applicable to other vibration

control and flight test data analysis problems.

B. OVERVIEW OF DISSERTATION

The second and third chapters cover background.
Chapter two provides an overview of helicopter dynamics.
The source of helicopter vibrations is also addressed.
The third chapter discusses aspects of Higher Harmonic
Control (HHC). It presents the mechanism of HHC, HHC
controllers and control law, some pertinent research, and
sketches the details of the McDonnell Douglas flight test
program.

The fourth and fifth chapters cover the classical
time and frequency dora n methods of analysis. These
metliods are the current state-~of-the-art in flight test

data reduction and interpretation.




The sixth chapter describes the geometric and
topological methods of chaos. Only those methods with
applicability to flight test data reduction are given.

Chapter seven presents the analysis of HHC data.
Some researchers have shown that the transfer matrix,
’T,’ in the HHC control law may be linear and repeatable
while other researchers have shown that it may be non-
linear and non-repeatable. This chapter shows how the
transfer matrix is linear and repeatable when vibrations
are defined in the rotor time domain, while it is non-
linear and non-repeatable when vibrations are defined in
the clock time domain.

The results from the chaos methods indicate a lower
limit to HHC vibration reduction due to chaos introduced
by the nonlinear nature of the dynamics. The eighth
chapter discusses the two Chaos methods, the Poincare
section and Van der Pol plane, that will reduce flight
test requirements by showing the limits of HHC
performance. The a.rcraft does not need a HHC system for
these methods to work.

The characteristics of the T’ matrix and how it
changes with flight conditions determine the design of a
control system. Chapter nine demonstrates, for the OH-
6A, that a scheduled gain controller is adequate for
steady level flight. A new technique is presented that

provides insight into the design of the controller for a




helicopter, based on a few minutes duration of flight
test data. The method does not require the aircraft to
be equipped with a HHC system.

The tenth chapter discusses helicopter vibrations
using classical and chaos methods. Although helicopter
vibrations are mostly periodic, evidence of chaos was
found in the form of a strange attractor. Chaos places a
lower limit on HHC vibration reduction. Also, the
determination of the exact nature of helicopter
vibrations has important implications in helicopter
simulations. Many helicopter simulation codes assune
that the helicopter vibrations are periodic.

Chapter eleven summaries the conclusions of this
dissertation.

Appendix A gives a description of the program CHAOS,
which was developed during_the course of this research.

Appendix B lists the available flight test measurements.
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Figure 1-1. Chaotic Motion. Starting from the sane
starting point, two trajectories representing the motion
of a chaotic system diverge exponentially until all
resemblance disappears. Chaos is motion which has
sensitive dependence on initial conditions.




II. BACKGROUND - HELICOPTER VIBRATIONS

A. PURPOSE
The purpose of this chapter is to review some aspects

of helicopter vibrations.

B. FORCES IN THE ROTOR

The forces in the rotor blades are primarily periodic
components of the rotor’s rotational rate and its
harmonics [Ref 2.1]. One per revolution or ‘1P’ are the
forces at the rotors rotational rate. Harmonics are
multiples of this 1P; for example, 2P, 3P, 4P and so cn
are the second, third, and fourth harmonics,
respectively. For the OH-6A, the rotor rotates at an
average of 483 rpm or 8.05 Hertz. Hence the 1P is 8.05
Hertz, the 2P is 16.1 Hertz, the 3P is 24.15 Hertz and so
on. Note the 1P, 2P, 3P and so on, are exact multiples
of the rotor’s rotational speed. In flight, the
helicopter rotor operates at nearly a constant rotational
rate, varying less than 2 percent. Since the rotor
rotational speed varies slightly with time, then the
frequencies associated with 1P, 2P, 3P and so on also
vary a small amount with time and are not constant. The
first 6 or so harmonics are important contributors to the

vibrations of a helicopter;




The primary cause of the rotor blade vibratory forces
is due to the asymmetric loading of the rotor blades in
forward flight [Ref 2.1]. Forward flight causes the
rotor blades to experience a constantly changing airflow.
This causes a periodic variation of the rotor blade
section angle of attack. 1In addition, each blade
interacts with the vortices shed by other rotor blades.
These varying air loads cause the blades to vibrate. A
nonuniform inflow contributes to the vibration. Figure
2-1 from Prouty [Ref 2.2] illustrates the varying air
loads. 1In addition, at high forward speeds the rotor
blades will experience aerodynamic stall of the
retreating blade and Mach compressibility effects on the
advancing blade.

Figure 2-1 also provides the convention used to
measure rotor azimuthal position. From this figure, note
that zero degrees azimuth is over the tail boom, 90
degrees is on the starboard side (also known as the
advancing blade), 180 degrees is over the nose, and 270

degrees on the port side (retreating blade).

C. ROTOR DESIGN AND CONTROL

The trend up to the 1970’s was to use symmetric
airfoils for rotor blades. For track and balance, they
closely match each other in aerodynamic shape, stiffness,

mass and inertia distribution. Also, airfoil sections




are designed to minimize control loads or changes of
aerodynamic pitching moment. with changes of blade section
angle of attack. [Ref 2.3]

The rotor blade attachment to the hub is, typically,
articulated. The blades can move freely normal to and in
the plane of the rotor by the use of hinges or
elastomeric bearings at the rotor hub. The motion normal
to the plane of the rotor is called "flapping" while
"lead-lag" is the motion in the plane of the rotor.
Flapping and lead-lag motion prevent rotor blade bending
moments from being transmitted to the hub. There are two
other common mechanical attachments of the rotor blades
to the rotor hub, in addition to the articulated rotor.
These attachments are the teetering rotor and the
hingeless rotor. They all accommodate the rotor blade
flap and lag motion. The OH-6A uses an articulated rotor
hub. Figure 2-2 presents a sketch of an articulated
rotor hub. Contrcl of the rotor blade is accomplished by
changing the pitch of the rotor blade. The resulting
change of rotor blade angle of attack changes the

aerodynamic forces on the rotor.

D. ROTOR AS A FILTER
Flapping and lead-lag hinges at the rotor hub relieve
bending moments, but shear forces still exist at the

rotor hub attachment point. "“Flapwise" root shears are




those forces normal to the plane of the rotor.
"Chordwise" root shears are those forces in the plane of
the rotor. These forces sum at the rotor hub and form
the loads transmitted to the fuselage.

Many of the root shear summations at the rotor hub
are zero. This is because rotor blade root shears are
periodic in nature (1P, 2P, 3P and so on) and because of'
the symmetric arrangement of the rotor blades about the
rotor hub. The rotor acts as a filter, letting only a
limited number of vibrations reach the fuselage [Ref
2.4]. In the case of a 4 bladed rotor, the only
vibrating components reaching the fuselage is the 4P, 8P,
12P, etc. For a 4-bladed rotor:

3P and SP flapwise blade root shears result in 4P
hub pitching and rolling moments in the airframe.
4P flapwise blade root shears feed into the
airframe as 4P vertical forces.
3P and 5P chordwise root shears produce 4P
airframe hub forces in the fore and aft and lateral
directions.
4P chordwise root shears result in 4P hub yawing
moments.
The 4P is at about 32 hertz in the OH-6A. The higher
harmonics on 4P (8P, 12P, 16P, etc.) will also filter
from the rotor to the fixed fuselage system. The

amplitudes of these forces are much lower than the 4P and
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are often ignored in analysis.- Notice that the force
transmitted to the fuselage frbm the hub is not at the
same frequency as the exciting frequency in the rotating
system.

Some caveats apply to this filtering process. First
this filtering works only for a perfectly symmetric rotor
system. Asymmetries in the rotor blades can produce
terms at frequencies other than the 4P. Also,
maneuvering flight will lead to leakage of vibrations at
frequencies other than the 4P to the fuselage. 1In fact
Gunsallus et al. [Ref 2.5] demonstrated the capability of
computing all the harmonics of the rotating rotor blade
motion by measuring vibrations only in the fixed
fuselage. Clearly the rotor is not a perfect filter.

The filtering process allows components of all
frequencies to pass to the fuselage.

These rotor hub forces ére the primary cause of the
fuselage vibrations. The rotor shakes the fuselage at
the rotor hub attachment to the rotor mast, far above the
fuselage. The fuselage will respond to these excitations
and cause the pilot’s seat to vibrate. Finally, the

pilot’s seat vibration causes the pilot to vibrate.
E. OTHER SOURCES OF HELICOPTER VIBRATIONS

Although the main rotor is the major source of

helicopter vibrations, there are other sources. The tail

11




rotor, its drive shaft, the engine and transmission all
produce vibration. The frequency of their contribution
is usually much higher than the rotors. The impact of
the rotor downwash on the fuselage is yet another source.
Finally, the fuselage response to turbulence adds to the

total vibration picture of the helicopter.

¥F. SUMMARY

The major source of vibration in a helicopter is the
aerodynamic excitation that comes from the rotor. This
vibration, in theory, is at a single frequency. The next

chapter discusses a method of eliminating this vibration.
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Figure 2-1. Airflow in Forward Flight. The
velocity acting on a blade is a function of radial

station, blade azimuth position, rotation of rotor,

and
forward speed of the helicopter [from Prouty (1986) with
permission of PWS Publishers, Copyright 1986].
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IIT. BACKGROUND - HIGHER HARMONIC CONTROL

A. PURPOSE

This chapter reviews Higher Harmonic Control (HHC).
Also described are various controllers used for vibration
control. A brief overview of research efforts in HHC is
given followed by a description of the McDonnell

Douglas/Army/NASA OH-6A HHC flight tests.

B. WHAT IS HHC ?

The rotor is the principal source of vibrations in a
helicopter. Also, these vibrations are caused
essentially at a single frequency. Active vibration
suppression systems can counter single frequency
vibrations. 1In contrast to other helicopter vibration
control devices, such as fixed-tuned fuselage vibration
absorbers, HHC alleviates vibration by modifying the
excitation (aerodynamic loading) at the source. HHC is a
computer controlled active vibration suppression system
which counters, in the case of a 4~bladed rotor, the 4P
vibration induced from the rotor. It continuously
monitors vibrations caused by the rotor and suppresses
them through high frequency rotor blade feathering. The

feathering is at an integer multiple (higher harmonic) of
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the rotor rotational rate. The name comes from this
fact.

Two schemes currently exist for HHC. All flight
tests to date and all wind tunnel tests but one, have
used "direct HHC." 1In this scheme, HHC works through the
existing flight control swashplate. The swashplate is a
part of the helicopter control system. It transmits the
control inputs from the stationary or fuselage frame to
the rotor or rotating frame. The stationary portion of
the swashplate is oscillated by actuators fixed to the
fuselage with continuous variations of amplitude,
frequency and phase. Certain combinations of these
parameters result in significant reductions of rotor
vibrations. The amplitude of swashplate excitation is
usually small, in the order of 0.20 inches measured at
the actuators. The swashplate is oscillated at a
frequency equal to the number of rotor blades times the
rotational rate. 1In the OH-6A this turns out to be the
4P or at approximately 32 hertz. The swashplate
excitation generates new incremental airloads which
cancel the vibratory blade loads that cause vibration.
There are several modes of motion of the swashplate which
may be described as follows:

The "lateral" mode refers to tilting the
swashplate laterally or in side-to-side direction

only.
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The "longitudinal" mode refers to tilting the
swashplate in the longitudinal direction or in the
fore and aft direction only.

The "collective" mode refers to moving the
swashplate collectively or in the up and down
direction only.

Optimal vibration reduction is seen to occur with
simultaneous application of lateral, longitudinal and
collective swashplate excitation.

As explained earlier, the rotor acts as a filter.
This process may also work in the opposite direction.
Tilting or translating the stationary portion of a 4-
bladed rotors swashplate at a 4P frequency results in
blade feathering at frequencies of 3P, 4P, and 5P in the
rotating system. This is summarized as follows:

4P collective swashplate movement results in 4P
rotor blade feathering.

4P lateral or longitudinal swashplate movement
results in 3P and SP blade feathering.

By carefully varying the amount of collective, lateral,
and longitudinal swashplate excitations any combination
of 3P, 4P, and 5P blade feathering may be obk*ained.

The second approach is to control the pitch of each
rotor blade independently. Known as "individual blade
control" (IBC), each rotor blade has an individual

electro-hydraulic actuator. Signals from sensors mounted
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on the blades supply appropriate control commands. To
transmit the pilot’s commands requires a reliable means
of going from the fixed to the rotating system. The IBC
is seen to have one major advantage. It can control more
than three swashplate degrees of freedom. For example,
IBC for a four bladed rotor can control more than just
the 3P, 4P, and 5P frequencies. However, concerns of
reliability prevent its current implementation on any

full scale helicopter.

C. CONTROLLERS

A control system (controller) is re:ponsible for the
swashplate tilting in a direct HHC system. The objective
of the controller is to reduce helicopter vibrations by
determining the proper amount of lateral, longitudinal, .
and collective swashplate excitation. Best vibration
reductior may be obtained by exciting all three modes of
swashplate tilting simultaneously. In a direct HHC
system, the controller attempts to reduce the vibrations
in a "measured response." Usually, the measured response
is the vibrations under the pilot’s seat. In contrast,
in IBC HHC, the measured response is always located on
the rotor blade.

Helicopters can vibrate in three different
directions: fore and aft (longitudinally), sideways

(laterally) and up and down (vertically). To describe a
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single frequency vibration requires two quantitiecs, an
arplitude and a phase. However, any single frequency
vibration can be broken into a sine and cosine part. It
is simpler to use the two amplitudes of the sine and
cosine parts in numerical computations. It follows,
then, that six quantities, two each for vertical,
lateral, and longitudinal, respectively, is enough to
describe helicopter vibrations. Using this concept, most
wind tunnel and flight tests use the following model for

HHC:

==+ 1u (3.1)

where, for the four-bladed OH-6A:

‘z' is a 6x1 vector of measured 4P (32 hertz)
vibrations (g’s).
'z’ is a 6x1 vector of baseline 4P (32 hertz)

o
vibrations (g’s). The ‘z’ and ‘z,'vectors consist of the
sine and cosine components of lateral, longitudinal, and
vertical vibrations for a total size of six elements.

T’ is a 6x6 control response matrix that relates the
swashplate movements to the vibration response of the
helicopter (g’s/inches).

‘u’ is a 6x1 vector of swashplate 4P (32 hertz)

movement. It consists of the sine and cosine components
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of lateral, longitudinal and collective swashplate
excitation (inches).

This control law assumes a linear static transfer
relationship (matrix ’‘T’) between command 4P swashplate
motion and 4P fuselage vibrations. The equation states
that the system 4P response (vector ’z’) consists of a
baseline response (vector ’‘z,’) plus a response which is
related to the 4P swashplate inputs (vector ‘u’) by a
transfer matrix (’T’). The transfer matrix ‘T’ and the

baseline vibrations ’z_.’ depend on flight conditions such

o
as forward speed.

Controllers are classified as being either "open-
loop" or '"closed-loop." There is no direct feedback of a
measured response for open-loop controllers while there
is a feedback of a measured response for closed-loop
controllers.

Furthermore, two versions of the above control law
exist. The "local model" assumes the control laQ is
linear about the current control value. The local model
is applicable even for nonlinear conditions, since the
transfer matrix ‘T’ is linearized about the current value
and changes in swashplate excitation ‘u’ are small. The
‘global model’ assumed the control law is linear for the
entire range of control.

There are two methods for identifying the transfer

matrix, ’‘T,’ and the baseline vibrations vector, "25. "
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In the "off-line identification method," the
characteristics of the ‘T’ and ‘2,’ are assumed
invariant. This assumption is appropriate only to the
global model. Generally, these matrices are generated as
a result of a least squares estimate of wind tunnel or
flight test data. These matrices are then used during
later flights. The off-line controllers are further
classified. In the "fixed-gain controller" the control
law matrix remains unchanged for all flight conditions.
The "scheduled-gain control" uses pre-determined
libraries of matrices, based on "measured flight
conditions" such as aircraft airspeed.

"On-line identification" continuously updates the
characteristics of the matrix with time. The update time
is normally in the order of once every rotor revolution.
These controllers are also called "adaptive controllers"”
since the "control gains" vary with time. The on-line
identification is applicable to both the global and local
models. Many versions of this identification scheme are

used. While some algorithms update the ’z_’ vector only,

(o]

some update both ‘z,’ and 'T’. Methods of updating the
matrices include Kalman estimators and Least Mean Square
adaptive inverse control. Finally, to limit the rate at
which the control law changes many adaptive controllers

add "caution" terms.

21




Considerable disagreement prevails over which
controller is appropriate. Also, other control models
exist, but are not tested. Controllers are the subject

of much research, as shown in the next section.

D. PREVIOUS RESEARCH

The foregoing review of previous research efforts is
by no means comprehensive, but it covers some important
contributions. The review is categorized under three
headings: theoretical analysis and numerical simulation,
wind tunnel tests, and lastly, flight tests.

1. Theoretical Analysis and Numerical Simulation

HHC is modelled in most major helicopter
comprehensive simulation codes. Wayne Johnson [Ref 3.1)
has modelled HHC in CAMRAD (Comprehensive Analytical
Model of Rotorcraft Aerocdynamics and Dynamics). Karan
Sangha [Ref 3.2)] modelled HHC using McDonnell Douglas’s
RACAP (Rotor/Airframe Comprehensive Aeroelastic Program)
in 1987. He concluded that HHC is independent of the
modal character of the rotor. Kip Nygren [Ref 3.3] in
1989 investigated controllers using Kaman‘’s DYSCO
(Dynamic System Coupler Program). He showed that fixed-
gain control can adequately reduce vibrations. However,
the flight conditions are required to be within about 20
knots of the flight conditions used to calculate gains

for the controller.
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Daughaday in 1967 [Ref 3.4)] conducted a study of
HHC on a two-bladed teetering rotor. Early studies
include that of Shaw in 1968 [Ref 3.5] and Balcerak and
Evickson 1in 1963 [Ref 3.6]. McHugh and Shaw in 1978 [Ref
3.7] suggested one of the earliest HHC algorithms. 1In
1980, Yen [Ref 3.8] conducted a theoretical investigation
of HHC for two and four bladed rotors. In 1981, Chopra
and McCloud [Ref 3.9) investigated four different HHC
feedback controllers. Johnson [Ref 3.10)] provides a
review of self-tuning requlators available before 1982 on
both a theoretical and experimental basis. Gupta and Du
Val [Ref 3.11] investigated an optimal control approach.
Unlike other control algorithms, their approach was able
to lock on the vibration gain and phase without resorting
to harmonic analysis. However, they assumed the system
to be linear-time-invariant, which is not always valid.
In 1983, Molusis [Ref 3.12] conducted a simulation study
which showed that nonlinearity is the main reason for the
failure of HHC algorithms to fully minimize vibrations in
his previous wind tunnel tests. Ham studied the
application of individual blade control (IBC) to HHC [Ref
3.13). Davis [Ref 3.14] in 1984 compared different
controller configurations. He used a computer simulation
that models the H-34 rotor mounted on the NASA Ames Rotor
Test Apparatus and found no distinct advantage for any of

the three controller types evaluated. Jacklin in 1985
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[Ref 3.15] used a Least Mean Square algorithm to solve
for the control transfer matrix. Hanagud et al. in 1986
(Ref 3.16) developed a technique to identify the transfer
matrix in a HHC model. Robinson and Friedmann in 1989
(Ref 3.17)] included the use of quasi-steady aerodynamics
in their study of HHC. Hall and Wereley in 1989 [Ref
3.18] used classical control theory to study HHC. They
concluded that real time adaptation of the control
transfer matrix is not crucial for satisfactory
performance of HHC.

2. Wind tunnel Investigations

There have been seven wind tunnel investigations
of HHC reported to date. 1In 1974, McCloud and Kretz [Ref
3.19], and Sissingh and Donham [Ref 3.20] concluded that
HHC would work with blade feathering of less than one
degree. In 1980, Wood et al. [Ref 3.21] tested a 4
bladed articulated rotor model using open loop collective
mode only. In 1980, Shaw and Alboin [Ref 3.22], first
applied closed loop HHC experimentally. They achieved 90
% suppression of the three independent vibratory hub
loads. Also in 1980, Hammond [Ref 3.23] attempted the
first experimental application of adaptive
identificaticn. He used a Kalman filter estimation with
stochastic (cautious) control to identify the transfer
matrix required to minimize vibration. Molusis, Hammond,

and Cline extended this work in 1981 to include fixed
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gain controllers [Ref 3.24)]. The scheduled gain
controllers would saturate without achieving reductions
in vibration levels. They concluded that the transfer
matrix was both nonrepeatable and nonlinear. Shaw et al.
[Ref 3.25] demonstrated in 1985 that a fixed gain control
could provide 90 % reduction throughout a large flight
envelope. In contrast, he found the control transfer
matrix was linear and highly repeatable.

3. Flight Tests of HHC

There have been four known flight tests of HHC to
date. Bell Helicopter attempted HHC in 1962 with a two
bladed Bell UH-1A helicopter without success. Drees and
Wernicke [Ref 3.26] reported that the vibration
reductions were small. The first successful flight
demonstration of HHC was in 1983 by Wood et al. [Ref
3.27]) on a four bladed OH-6A. Wood and Powers in 1980
[Ref 3.28] presented a preliminary design study for this
aircraft. Straub and Byrns in 1986 [Ref 3.29] fully
documented this flight test. Walsh [Ref 3.30] and Miao
et al. [Ref 3.31] reported on the open loop HHC flight
demonstration on a four bladed S-76A helicopter during
1985. They achieved significant vibration reductions at
forward speeds up to 150 knots. Polychroniadis and
Achache [Ref 3.32)] reported the open loop and closed loop
HHC flight tests on a three bladed SA 349 Gazelle

helicopter conducted in France in 1985. They also
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achieved 80 % reductions in the cabin vibrations at 150

knots.

E. THE MCDONNELL DOUGLAS/NASA/ARMY HHC TEST PROGRAM

1. Scope of Tests

This section briefly describes the OH-6A flight
tests. The flight test program consisted of three
distinct phases covering the period of 1980 to 1984.‘
First, the flight test OH-6A underwent major changes to
include the HHC system. Then, approximately 15 flight
hours were devoted to open loop testing. In open loop
testing, the phase and amplitude of the HHC blade
feathering was set manually. Over 26 flight hours were
devoted to testing of the closed loop system. In closed
loop operation, a microprocessor controlled the phase and
amplitude. Figure 3-1 presents a summary of the results,
the flight conditions, and modes tested. The figure
presents the 4P pilot seat vertical acceleration obtained
by Fourier analysis using the McDonnell Douglas HARMONS
program. Tests include all three open loop (manual)
modes and eight closed loop (computer controlled) modes
using different controller softwares. The figure depicts
two of the best closed loop modes. The airspeed ranged
from hover and 40 to 100 knots, in 10 knot increments.

In open loop testing, for each airspeed, the amplitude of

excitation was fixed, and the phase was varied in
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increments of 30 degrees over a total range of 0 to 360
degrees. Each phase sweep for a given airspeed required
an average of 15 minutes. Figure 3-1 presents data at
the best phase setting obtained from open loop testing.
2. Description of Test Aircraft

The OH-6A used for HHC testing was a one of a
kind aircraft. A previous flight test program modified
the OH-6A to include a 1,500 psi boost system for its
primary controls. This irreversible control system
prevented feedback from the HHC actuators to the pilot’s
controls. Three electro-hydraulic actuators replaced
existing links in the primary control system. They were
located between the mixer and the stationary swashplate
just below the rotor head. The actuators were capable of
changing the blade feathering angle by 2 degrees, about
11 % of the total range available. The three
accelerometers mounted under the pilot’s seat sensed the
vibrations. The analog acceleration signals were sent to
an electronic control unit (ECU) for conversion to
digital signals and then transferred to the airborne
digital computer. A Sperry Flight Systems multiplex
remote terminal unit Type 3A served as the on-board
computer and determined the required blade feathering.
The computer sent its digital commands back to the ECU,
which in turn converted them to analog signals. These

analog signals drove the three actuators that tilted the
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stationary swashplate. The resulting swashplate movement
caused the blades to change pitch. The high frequency
feathering of the rotor blades generated aerodynamic
forces. These forces were transmitted through the rotor
blades, rotor hub and the fuselage to reduce the
vibration sensed under the pilot’s seat. Figure 3-2
presents a sketch of the HHC system installed on the OH—-
6A test aircraft.

The Airborne Data Acquisition System measured and
recorded the flight test data. Strain gages placed on
one rotor blade of the main rotor measured flapwise
bending, chordwise bending, and torsion moments. An LVDT
measured HHC actuator positions while potentiometers
measured blade feathering, flapping and lead-lag angles.
There were three groups of triaxial accelerometers that
measured fuselage accelerations. There were strain gages
that measured tail boom and main rotor mast bending
moments. The pitch link loads, the main rotor RPM, the
main rotor shaft torque, the aircraft airspeed and the
main rotor azimuth position were all sensed. Appendix B
presents a list of measurements made available from these
flights to the Naval Postgraduate School.

3. Method of Tests

The pilot stabilized the aircraft at the flight

test airspeed for at least 20 seconds, while the flight

test engineer operated the HHC system. In open loop
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testing, he turned the system on and off, selected mode,
amplitude and phase of excitation. In closed loop
testing, he turned the system on and off and selected
gains on the control matrices. The flight test engineer
turned on data recording for about ten seconds during the
most stable conditions. After the flight, five second
time slices of the most stabilized portion of the data
were selected. These time slices constitute the data
used in the flight tests reports.
-4, Results

The principal objective of the flight test was to
minimize 4P vibration only, rather than to counter all
vibrations inherent in the helicopter. Figure 3-3
presents the open loop test results for lateral
swashplate excitation equivalent to + 0.33 degree of
blade angle of attack change at airspeeds from 60 to 100
knots. The figure depicts the 4P (32 hertz only)
accelerations in g’s as measured vertically and laterally
by accelerometers mounted under the pilot’s seat. These
values were obtained by Fourier analysis by a HP 5423
spectral analyzer. Notice that there exists up to 100
percent difference between these estimates and those in
Figure 3-1. The estimates in Figure 3-1 and Figure 3-3
were computed using different methods. The frequency
domain chapter discusses the difficulties in obtaining

accurate Fourier estimates.
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The input phase refers to the phase of the
swashplate tilting in relation to the main rotor
position. In the lateral mode, zero degree controller
phase corresponds to tilting the swashplate to the port
when the four rotor blades were at 0, 90, 180 and 270
degrees rotor azimuth, respectively. 180 degrees
controller phase corresponds to tilting the swashplate to
starboard when the four rotor blades were at 45, 135,
225, and 315 degrees rotor azimuth, respectively. Notice
360 degrees of input phase to the controller corresponds
only to 90 degrees of rotation of the rotor. Also, the
data for each of these graphs in Figure 3-3 come from 14
different flight test points. A typical series of tests
at each airspeed took 10 to 15 minutes to record.

From Figure 3-3, it is apparent that for certain
controller phases, HHC has the ability to make the
helicopter vibrate more. For all the airspeeds tested,
maximum vibration occurs at 90 degree controller phase
and minimum vibration at 300 degree manual controller
phase. By using only the lateral excitation of the
swashplate, the 4P vertical vibration are reduced from
0.25 g to 0.04 g (at 60 knots). Similarly, the
reductions for 4P lateral vibration are from 0.12 g to
0.02g (at 60 knots).

Wood et al. [Ref 3.28] and Straub and Byrns [Ref

3.29] summarize other results from this flight test.
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They conclude that the 4P vibrations under the pilot’s
seat were significantly reduced with the HHC system. The

system did not adversely affect blade loads or helicopter

performance.
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IV. TIME DOMAIN ANALYSIS

A. PURPOSE

State-of-the-art analysis of flight test data
includes the use of both time and frequency domain
methods. This chapter outlines the basics of measuring
data in the time domain. The next chapter describes the
analysis in the frequency domain. The overview includes
some of the common measurements in the time domain. Aan
excellent source for the time domain analysis is Otnes

and Enochson [Ref 4.1].

B. DIGITAL SIGNALS

Measurement of any quantity is initially as an analog
signal. In an analog signal, the amplitude of the signal
can vary continuously with time. At a given instant, the
signal can assume any value within a relatively wide
range of values. Translation of analog signals to
digital signals occurs in a flight test for transmission,
storage and subsequent analysis. This analog-to-digital
conversion process introduces errors into the data.

Generally, there are three steps to convert an analog
signal to a digital signal; namely, sampling, quantizing
and encoding. Figure 4-1 illustrates the sampling

process. Sampling a continuous analog signal in time
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forms a series of values. Consider an analog signal that
has a frequency spectrum covering a band from zero to an
upper frequency (known as the "Nyquist frequency"). It
is possible to transmit all the information by sampling
the signal, at regular intervals, at twice the rate of
the Nyquist frequency. Sampling converts a continuous
signal to digitized signal in time.

On the OH-6A, the data sampling rate was 1230 samples
per second or loosely said, 1230 Hertz. This implies
that the upper limit in the frequency resolution, or, the
Nyquist frequency, is 615 Hertz.

The second step, quantizing, samples the signal in
terms of amplitude. Figure 4-2 illustrates this process.
Quantizing divides the entire amplitude range into a
number of discrete levels, known as '"quantum levels."
Comparing the amplitude of the analog signal with the
quantum levels results in a quantum level that is nearest
to the amplitude of the analog signal. That is, the
quantum level approximates the actual amplitude. Hence
the quantizing process introduces a quantization error.
The maximum error is one half of the quantum step size,
resulting in THE major source of error in measurement of
flight test data.

In the flight test data of OH-6A, the number of
quantum levels was 1024. This results in a the maximum

error of about 0.05 percent. 1In practice, the
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quantization error is found to be more than this. The
limits of the full scale range are rarely set about the
correct interval. For example, Figure 4-3 presents five
seconds of flight test data for the rotor rpm of the OH-
6A. Quantization error is readily apparent. 1In this
case, the full range of acceptable values for rpm were
from 14 percent to 206 percent. However, once airborne,
the rotor rpm stays within 1 to 2 percent of its normal
100 percent rpm. The quantization error is large in this
case because the range of acceptable input values is
large, while the fluctuations about an average point is
small. This example reflects one of the worst
quantization errors for the OH-6A.

The final step, encoding, is the translation of the
quantum levels to fewer levels, but using several
discrete elements. In other words, translate the 1024
quantum levels to only 2 quantum levels (binary) by using
several bits. The OH-6A flight test instrumentation
system used a 10 bit binary word, hence 1024 guantum

levels can be represented (2 raised to the 10th power).

C. MEASUREMENTS IN THE TIME DOMAIN
Once the data is obtained as a digitized time series,
different "measures" may be computed. ‘N’ represent the

number of digitized values and ’'x’ represent the
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digitized amplitudes of a signal. They form a data

record. The mean ’x,’ is then defined as:

| &
X, = :\—,Z‘

=1

Y, (4.1)

The energy content of the signal in the time domain is

given by:
R
FNERGY = ——— (o, — 1,)° (4.2)
(N =1) o

This is the well known formula for variance or the first
moment of the mean. The vibratory energy of a signal is
equal to the variance in the time domain.

The square root of the variance is the standard
deviation, while the second moment of the mean yields
skewness and the third moment of the mean is referred to
as kurtonis. Shewness is a nondimensional number which
characterizes the degree of asymmetry of the data around
its mean. Kurtosis is also a nondimensional quantity
that measures the relative peakedness or flatness of the
distribution of the data relative to a normal

distribution.
D. ERGODIC AND STATIONARY DATA

A major assumption made in Fourier Analysis is that

the measured data is ergodic and stationary.
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Data is stationary if the mean and variance are
independent of time. In other words, the values for the
mean and the variance stay constant for all data segment
sizes. For example, Figure 4-4(a) presents a signal with
a stationary mean, variance and frequency. Figure 4-4(b)
presents a signal with stationary mean but with a non-
stationary variance and frequency. Figure 4-4(c)
presents a signal with non-stationary mean but stationary
variance and frequency.

Ergodicity is the property that requires the short
time averages to be equal to averages over the entire
process. In order to test whether a signal is stationary
and/or ergodic, a long record is examined by partitioning
it into a number of sections of equal length. If the
mean value and variance obtained from each partitioned
section are the same as those calculated from the entire
record, the signal is considered as ergodic. Note that

in figure 4-4, only part (a) is ergodic.

E. SUMMARY

Quantization error is normally the major source of
error introduced by a practical flight test
instrumentation system. Also, the Nyquist frequency
limits the upper frequency of the input signal. Major

assumptions are made that the input data is ergodic and
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stationary, although the real flight test data is seldom

ergodic and stationary.
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V. ANALYSIS IN THE FREQUENCY DOMAIN

A, PURPOSE

An alternate method to analyze flight test data is in
the frequency domain. The aim of this section is to
introduce the fundamental ideas of Fourier analysis.
Discussion includes limitations of these transforms. A
good source for further information may be found in [Ref

5.1 to 5.4].

B. FOURIER TRANSFORMS

Our ear converts sound waves traveling through time
into a spe:trum of frequencies, a description of the
sound as a series of volumes at distinct pitches.
Similarly, Fourier analysis breaks down a function in
time into harmonic components that have varying
frequencies, amplitudes and phases.

Any periodic waveform is equivalent to the sum of a
number of sinusoids. Consider a signal which consists of
two sinusoids, a high and low frequency sine curve as
shown in figure 5-1(a). Looking down the frequency axis
gives part (b). This is the time domain view of the
waveform, obtained by adding the sinusoids at each moment
in time. Looking down the time axis gives part (c), the

signal as observed in the frequency domain. The switch
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from the time to the frequency domain produces no new
information. The same information exists, but the
presentation is different.

The Fourier transform converts a time domain
function, ‘x(t)’, into the frequency domain function,

’S(f).’ The complex form of this transform is:
.\."w‘): / A.I‘l/l(’—:“!(lt (5.1)

'S(f)’ is known as the Fourier transform of ‘x(t).’ It
is in general complex, and contains amplitude and phase
information for all frequencies which make up ’x(t).’
Figure 5-1(c) represents the amplitude spectrum of a
signal. However, full representation of a sivaal in the
frequency domain requires two numbers at each frequency.
For instance, these can be the amplitude and phase. The
signal may also be represented as a single complex number
or by a sum of weighted sires and cosines at each
frequency. A signal in the frequency domain requires two
plots for full representation. These plots may either be
an amplitude and phase plot versus frequency, a real and
complex plot versus frequency or a cosine and sine plot
versus frequency. However a signal in the time domain
requires only one plot of amplitude versus time for full

representation.
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A commonly used representation is the "Power Spectral
Density" or PSD graph. The vertical axis gives the
square of the amplitude and the horizontal axis indicates
frequency. Fcr example, an accelerometer provides
measured accelerations in the units of "g’s". On a PSD,
the plot is "g’s squared" versus "frequency." Therefore,
the units of a PSD are really in terms of energy not

power.

C. PARSEVAL’S THEOREM

"Parseval’s theorem" states that the total power in a
signal is the same, whether computed in the time or the
frequency domain. The sum of a PSD from zero to the
Nyquist frequency gives the total energy in the frequency
domain. As energy is invariant, the energy computed in
the time domain (variance) is the same as computed in the

frequency domain.

D. PHASE SPECTRUMS

Use of phase spectrums is not as common as the use of
PSD. In Figure 5-2, the upper plot givecs the PSD of the
vertical acceleration under the pilot’s right seat. The
lower plot is the phase spectrum of the same
acceleration. Note that the phase spectrum gives equal
weight to reporting the phase of both the low and high

amplitude signals. It is difficult to determine the
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phase at a particular frequenqy. Generally, not much
attention is given to phase determination in spectral
analysis.

A phase is measured or provided relative to a
reference quantity. In figure 5-2(b), the phase is shown
relative to the start of the data record. A different
data record start produces a completely different phase
spectrum. A possible solution is to fix the start with
respect to some quantity. For example, main rotor
azimuth position is a common adopted choice. In figure
5-2(b), the start of the data record is at 0 degree rotor
blade azimuth position, and the plot may be called as a

relative phase plot.

E. DIFFERENT METHODS FOR PSD’s

There are many methods of obtaining the PSD of a
signal. Figure 5-3 [Ref 5.4] summarizes many spectral
estimators. Part (h) is the true PSD. Observe the large
differences between each of the estimates. The visual
comparison of spectral estimates can often be misleading.
The sharpest of the peaks of a spectral estimate is not
an indication of the resolution of a spectral estimate.
The classical PSD estimation is the periodogram method,
part (i). Other methods require a prior knowledge of the
PSD curve to provide a model to the estimator. The

periodogram method is superior for HHC applications,
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since it requires no model. We will limit our discussion
to the periodogram method, although, all of the
limitations discussed below apply equally to other

methods.

F. LIMITATIONS AND RESTRICTIONS

Digitizing the data leads to some limitations and
restrictions. The discreta data points used in obtaining
a Fourier transform represent a continuous time signal.
If data acquisition time or period is ‘T,’ the number of

data points is 'N,’ and the sampling rate ’‘dr,’ then

N o= Tdr (5.2)

For example, five seconds (T) of data at 1230 data
samples per second (dr) was made available in HHC flight
test. This data record yields a total of 6150 data
points (N).

Many important restrictions also occur because of the
finite record length of the data. For practical reasons,
flight tests restrict the period, ’T,’ to about 5
seconds. Some restrictions are summarized below.

1. Periodic, Stationary and Ergodic Data

The first major restriction on the use of Fourier
transform is that the time series must be periodic.

Also, the data must also be stationary and ergodic.
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These restrictions may be overcome by allowing the
period, ’‘T,’ of the signal to approach infinity, which is
impossible in flight test.

2. The Fast Fourier Transform

The most common way to obtain the periodogram PSD
is the Fast Fourier Transform (FFT). The FFT is an
algorithm for obtaining efficiently the fourier transform
of a time series. The algorithm operates on an array of
N complex data points in the time domain. It produces an
array of N/2 complex data points in the frequency domain.
An important restriction in using this algorithm is that
the number of data points in the time domain must be a
power of 2 (for example, 512, 1024, 2048, etc.).

Normally the time domain data is real, so that the
imaginary part of each input data point will be zero.

The PSD amplitude (energy) is the sum of the
squares of the real and imaginary parts of the FFT'’s
complex output. Fourier phase is the arc tangent of the
imaginary part divided by the real part.

3. Nyquist Criterion and Aljiasing

A limitation exists on the frequency range of the
PSD and this imposes an important restriction in
practical applications. The frequency range of the
Fourier transform is from zero to the Nyquist frequency.

The Nygquist frequency is equal to one half the sampling

49




rate. For the HHC sampling rate of 1230 hertz, the upper
limit or Nyquist frequency is 615 hertz. |

Note that this Nyquist frequency is independent
of the number of samples in the record. The frequency
resolution may be increased by increasing the number of
samples (by taking longer periocds of data). However,
this does not increase the maximum frequency in the

spectrum. In other words:
lf—<l (5.3)
{ = .
T

For example, a 5 seconds of flight test data
results in resolution of 1/5 Hertz. This implies that
the minimum difference between adjacent fregquencies is
1/5 Hertz. This is yet another restriction in obtaining
an accurate estimate of the PSD.

If sampling is slower than twice the frequency of
the input signal, then a false low frequency appears in
the PSD. This phenomenon is called as "aliasing."
Shannon’s Sampling theorem states that a sampled time
signal must not contain components at frequencies above
half the sampling rate (the Nyquist frequency or "Nyquist
criterion"). If the frequency of the input signal is
greater than half the sample rate, a spurious signal will
result. As an example, for a 615 hertz Nyquist

frequency, a true signal containing a component at 700
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Hertz would show up on a PSD at 530 Hertz. The problem
of aliasing is prevented by adding a low-pass or
"antialias" filter before the sampler to limit the input
frequency range.

Shannon’s sampling theorem does not imply that
the sampling rate must be more than twice the highest
frequency of interest, but that filtering the high
frequency components out must occur before sampling the
signal.

4. Leakage and Windowing of Data

Another important problem is due to leakage.

This problem is best illustrated by an example. Consider
a sine curve as shown in Figure 5-4. 1In part (a) is the
sine curve. In part (b), recorded is an integral number
of cycles of this sine curve over a duration, ’'T.’ As
stated earlier, an implicit assumption is the data record
containing the sampled block repeats throughout time. 1In
part (c), the assumed signal exactly matches the input.
Part (d) presents the PSD obtained in such a case and it
contains a single spike as expected.

Now consider Figure 5-5, again the case of a
continuous sine curve. The failure to select an integral
number of cycles of the sine curve results in the highly
distorted waveform shown in part (c). Part (d) presents
the PSD in this case. The smearing of energy throughout

the frequency domain is called "leakage" and results in
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distortion of the PSD. Leakage occurs because of the
finite length of time, 'T,’ of the data record.

A solution to leakage is to window the data as
illustrated in Figure 5-6. Note that windowing the data
TAMPERS with the data. Figure 5-6(f) shows that the PSD
is closer to the correct single line, but not exactly it.
Typical window functions include Parzen, Hanning,
Hamming, and Welch. The difference between these
functions lie in subtle trade-offs among various figures
of merit used to describe the narrowness or peakedness of
the PSD. There exists effectively no difference between
any of these window functions for practical spectral
analysis [Ref 5.17.

6. Accuracy of PSD’s

The accuracy of PSD estimates do not increase
with the number of sampled data points, ’‘N.’ The
variance of the PSD estimate at a selected frequency is
always equal to the square of its expected value at that
frequency. In other words, the standard deviation is
always 100 percent of the value of the PSD estimate.

Let us consider the effect of increasing ‘N.’
Using a longer duration of data at the same sampling rate
leaves the Nyquist critical frequency unchanged, but
gives finer frequency resolution (more frequency bins).
Alternatively, sampling the same length of data with a

finer sampling interval leaves the frequency resolution
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unchanged, but the Nyquist frequency range now extends up
to a higher frequency. In neither case do the additional
samples reduce the variance of estimated PSD at any
particular frequency.

There are methods to increase the accuracy of a
PSD. One simple method is to compute a PSD estimate with
a finer discrete frequency spacing than desired. A
smooth estimate is obtained at the mid-frequency by
summing the PSD estimates at adjacent discrete
frequencies. The variance of the estimated sum will be
smaller than the individual estimates. This procedure
trades frequency resolution for greater accuracy in the

estimate of the amplitude of the PSD.

G. SUMMARY

This chapter summarized some of the many facets of
frequency domain analysis. The sampled data is assumed
to be stationary, ergodic and periodic. Many important
restrictions are due to digitization of data with finite
record length. The peak value at a given frequency gives
an inaccurate estimate of the PSD. There are many
methods to calculate PSD, each giving a different
estimate. Also, any estimate may be obtained by

"tampering" the data appropriately.
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(a)

Amplitude

Amplitude
Amplitude

i —

Frequency

(c)

(a) Time and

Figure 5-1. The frequency domain.
(b)

frequency domains represented in three dimensions.

Time domain view. (c) Frequency domain view. [from
Turner, v. L. (1983) with pcrmission of Springer-Verlag,

copyright 1988].
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Figure 5-3. Comparison of Power Density Spectrum
Estimators. (a) Autocorrelation. (b) Covariance. (c)
Modified covariance. (d) Burg. (e) Recursive MLE. (f)
MYWE. (g) LSMYWE. (h) True PSD. (i) Akaike. (3)
Mayne-Firoozan. (k) Durbin. (1) Periodogram. (m)
Blackman-Tukey. (n) MVSE. (from Kay, S. M. (1988) with
permission of Prentice-Hall, copyright 1988].




]
Record length
—

(a)

Frequency

Figure 5-4. Periodic Signal. When the signal is
periodic within the truncated time record, the assumed
repeats match the input. (a) The signal. (b) Truncated
record. (c) Assumed repeats exactly match the input
signal. (d) The spectrum resulting from (c). [from
Turner, J. D. (1988) with permission of Springer-Verlag,
copyright 1988].
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(c)
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|
|

Frequency

Figure 5-5. Not Periodic Signal. 1Input signal not
periodic within time record, and resulting assumed input
is distorted. (a) The signal. (b) Truncated record.

(c) Assumed repeats do not match the input signal. (d)

Distorted spectrum resulting from (c). [from Turner, J.
D. (1988) with permission of Springer-Verlag, copyright
1988].
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(a)

(c)

(e) ()

Amphiude

Anmphtude

Frequency Frequency

Figure 5-6. Windowing. The effect of windowing a
continuous signal. (a) The signal. (b) Assumed repeat.
(c¢) Window function. (d) Assumed repeat, windowed data.
(e) Spectra obtained from a sine curve not periodic
within the record without the window. (f) Spectra with
. Hanning window function. [from Turner, J. D. (1988) with
permission of Springer-Verlag, copyright 1988].
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VI. GEOMETRIC AND TOPOLOGICAL METHODS OF CHAOS

A. PURPOSE AND INTRODUCTION

The previous two chapters discussed the state-of-the-
art in the flight test data analysis. The purpose of
this chapter is to discuss some aspects of the geomecric
and topological methods of chaos. Chaos is present only
in some nonlinear dynamical systems.

A non-linear dynamical system may be classified as
deterministic or non;deterministic. A deterministic
system is described by a finite number of equation(s)
with known parameters and initial conditions. The
responce of such a system is predictable. A periodic
system is a type of a deterministic system whose motion
can be described by harmonic functions.

A deterministic system may be sensitive to small
changes in initial conditions. Such a system is defined
as chaotic. Chaotic motion may appear random.

A non-deterministic system can be describel only in
probabilistic terms. Such a system possesses equations
those terms vary randomly. In a purely random systen,
amplitude is independent of frequency. The Feurier power
spectrum appears contir.ious. [Ref 6.1]

Differentiating between chaotic and random responses

from an experimental observation is difficult. 1In
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general, the follcwing approaches may lead to evidence of
chaos in nonlinear dynamical systems [Ref 6.1].

Make an observation of the time history of the
signal.

Compute the Fourier spectrum of s .gnal.

Construct and observe the phase plane and phase space
portrait.

Construct the Poincare section of the signal.

Compute Lyapunov Exponents.

‘Compute Fractal Dimension.
In the following discussions, four examples are selected
to illustrate the above approaches. A lucid exposition

of chaos is presented in Crutchfield [Ref 6.2].

B. ILLUSTRATIVE EXAMPLES

Four examples, each increasingly more complex in
dynamics, will illustrate various aspects of each
approach. The first simple example, referred to in this
report as the "32 Hertz" example, is a sinusocidal signal

given by the following formula:

fity=14+0.25<in{32) (6.1)

Figure 6-1(a) presents a portion of this signal. This

example closely models the 4P vertical vibration in a

four bladed helicopter.
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The next example, referred here as the "Harmons"
example, consists of a signal obtained by summing twelve
sinusoidals together given by the following formula:

12

flity =1+ a,sin(wt +0,) (6.2)

1=1

The sinusoidals are harmonics of each other with the
first harmonic at 8 Hertz, the second at 16 Hertz, the
third at 24 Hertz, and so on, to the twelfth at 96 Hert:z.
Table 6-1 gives the amplitude, frequency and phase of
each component. Figure 6-1(b) graphs a portion of this
signal. This example closely models the output from many
of the comprehensive helicopter analysis programs, such
as CAMRAD, RACAP, and DYSCO [Ref 2.1, 2.2 and 2.3]. This
example may also be viewed as an adaptation of the next
example. The amplitudes, phases, and frequencies in
Table 1 were computed by transforming the next example
into the frequency domain. The amplitudes and phases
were then estimated and recorded at the harmonic
frequencies.

The third example, referred here as the "Actual"
example, consists of flight test data. The data is taken
from a vertical accelerometer located under the right
pilot’s seat. The conditions of flight are level flight
at 60 knots and the HHC system is turned off. Figure 6-

1/c) plots a portion of this data.
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The fourth example, referred here as the "Random"
example, consists of random noise. Figure 6-1(d) plots a
portion of this signal. The signal consists of random
noise generated by a random number generator.

Each of the examples were digitized at the rate of
1230 Hertz and 5 seconds duration of data were generated.
Hence, a total of 6150 data points were recorded for each
example. This digitizing rate and record length matched

with the data obtained from flight test.

C. TIME HISTORY

A first step in identifying chaos is to examine the
time history of the signal. A motion with no pattern or
periodicity is either chaotic or random. In Figure 6-
1(a), the 32 Hertz signal is periodic. In Figure 6-1(b),
the Harmons signal is also periodic. However, in Figure
6-1(c), the Actual signal appears not to be periodic. It
may be chaotic or random. The signal exhibits no visible
regular pattern but contains a strong 32 Hertz (4P)
component. In Figure 6-1(d), the Random, the signal
appears chaotic or random. One can only determine
whether a signal is periodic or not periodic by examining
its time history [Ref 6.3].

The subroutine TIMSER of the program CHAOS produced

Figure 6-1.
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D. FOURIER SPECTRUM

One of the clues to detecting chaos in a dynamic
system is the existence of broad band fourier spectrum.
The Fourier spectrums are very good for separating a
periodic phenomena from chaotic or random phenomena. 1In
Figure 6-2, parts (a) through (d) give the Fourier
spectrums for the 32 Hertz, the Harmons, the Actual, and
the Random signals, respectively. The Fourier spectrum
of the 32 Hertz and the Harmons signals are just spikes,
while a broad band spectrum is seen in the Actual and
Random signals. For periodic motion, the Fourier
spectrum shows a set of narrow spikes or lines. This
indicates the signal is a discrete set of harmonic or
sinusoidal functions. Near the onset of chaos, however,
a continuous distribution of frequencies appear [Ref
6.4]. In Figure 6-2(c), the level of this distribution
is more than two orders of magnitude above the horizontal
line representing calculation noise. In a fully chaotic
regime, the continuous spectrum may dominate the discrete
spikes. Although useful in indicating the existence of
chaos, the Fourier spectrum reveals nothing about the
structure of the phenomena. The Fourier spectrum by
itself can not distinguish between chaotic phenomena
involving a small number of degrees of freedom and random

vibrations.
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Note that a horizontal dashed line indicates the
calculation noise level. On transforming a signal from
the time domain to the frequency domain, there is a
calculation noise due to the finite precision of the
computations. The calculation noise is equal to the
output of the fourier transform above the frequencies of
the anti-aliasing filter. The anti-aliasing filter
removes all signals above a selected frequency. The
output of the Fourier transform above this frequency is
due to calculation noise. Figure 6-3 illustrates the
determination of calculation noise.

The subroutine PSD of the program CHAOS produced

Figure 6-2 and 6-3.

E. THE 2-DIMENSIONAL PHASE PLANE

Information leading to the understanding of nonlinear
dynamics may be obtained by examining the 2-dimensional
(2-D) phase plane. In the phase plane, the complete
state of knowledge about a dynamical system at a given
instant collapses to a point. At the next instant the
system dynamics change, and the point is displaced. A
moving point charts the history of the system. 1In the
phase plane, the coordinate axes may be selected as any
two independent quantities which best described the

dynamics of the system. In the study of vibrations, a
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classical choice is to select amplitude and velocity of
motion.

Consider the 32 Hertz example which represents the
amplitude response of the motion of a simple pendulum.
Differentiating the signal provides the velocity of
motion. The amplitude and the velocity of the pendulum
varies with time as the pendulum oscillates. Figure 6-4
presents the motion of a pendulum as represented in a
classical phase plane. The horizontal axis is the
amplitude and the vertical axis represents the velocity.
As the pendulum swings back and forth, it trades kinetic
energy for potential energy. 1In sketch at the top of
Figure 6-4, the pendulum has maximum potential energy.
As the pendulum swings down, the amplitude decreases
while the velocity of the mass increases. The maximum
velocity of the mass occurs when amplitude is zero. This
figure shows a succession of states, and their
corresponding representations in the phase plane; as the
pendulum swings back and forth.

Connecting the states of the pendulum in the phase
plane gives a circle which represents the motion of the
pendulum over one complete cycle. This curve
representing the mction of the pendulum is called the
"trajectory." In Figure 6-4, the pendulum is assumed to
be frictionless and will continue to oscillate

indefinitely. An important observaticn for periodic
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motion is that the trajectory forms a closed orbit in the
phase plane. A "limit cycle" is another name for such
closed orbits and the time taken for one orbit is the

"period" of the motion.

F. TAKENS’S THEOREM

Before examining the representations of the other
examples in the 2-D phase plane, consider another useful
technique. The construction of 2-D phase plane requires
two variables, namely, the amplitude and the velocity of
motion. In typical flight test, however, only one
vibration variable is usually measured, either the
amplitude from a strain gage or the acceleration from a
accelerometer. In both instances, the choice then is
either to differentiate the strain gage signal (once, for
velocity) or integrate the accelerometer signal (once,
for velocity and twice, to obtain amplitude).

However, integrating or differentiating a signal also
has the effect of filtering the signal. Differentiation
of a signal will amplify the high-frequency noise, and
attenuate the low frequency signal. The effect of
differentiating is illustrated by the following example.

Consider the signal given by equation (6.3)

S(t) = sin(0.14) + sin(t) + sin(10¢) (6.3)
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Differentiating the equation (6.3) gives equation (6.4):

f(t) = 0.1 cos(0.1¢) + cos(t) + 10 cos(10¢) (6.4)

Observe that differentiation attenuates the low frequency
or 0.1 Hertz signal by a factor of 10. It leaves the 1
Hertz signal unchanged, but increases the 10 Hertz signal
by a factor of 10.

Similarly, integration produces an effect opposite to
that of differentiation. It amplifies the low frequency
components of a signal while attenuates the high
frequency components.

Thus the procedure to construct phase space diagrams
is inaccurate when the data is obtained from one
experimental observation. The solution came in 1980,
when Packard et al. [Ref 6.5] conjectured and later
Takens proved [Ref 6.6] a new method where ’'fake’

observables are obtained from only one observable. A

typical experimental observation consists of a time
series. A time series is an array of numbers
representing the value of the observed quantity at
regular intervals of time. Takens’ method involves

displacing the time value to produce any desired number
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of more ’'fake’ observables. Consider the following

example:
Series 1 1.43, 1.40, 1.35, 1.32, 1.28, 1.31, .
Series 2 1.40, 1.35, 1.32, 1.28, 1.31,

Let Series 1 be the digitized values of an observable,
say for example, the vertical acceleration under the
pilot’s seat. Then, Series 2 is the ’‘fake’ observable
formed by displacing the time series by one sample. This
displacement is referred to as "embedding time." In this
example, the embedding time was set equal to one sample.
By taking the points in Series 1 as the x-coordinate, and
the corresponding points in Series 2 as y-coordinate, a
trajectory in 2-D phase plane may be drawn. In other
words, to form a trajectory, plot successive columns of
pairs. For example, the first pair is (1.43, 1.40) and
the second pair is (1.40, 1.35). To illustrate an

embedding time of 2 samples, consider the two series:

Series 1 1.43, 1.40, 1.35, 1.32, 1.28, 1.31,

Series 3 1.35, 1.32, 1.28, 1.31, . . .

Again, Series 1 is the observable, the same as before.

Series 3 is the new ’'fake’ observable with an embedding

time of 2. Use the same method to form a trajectory by
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plotting successive columns of pairs. The first pair is
(1.43, 1.35), the second is (1.40, 1.32), and so on.

This method of forming ’‘fake’ observables and plotting is
called the "pseudo phase plane" method [Ref 6.6].

Mathematically, this process may be described as:

(r(t), x(t = ) or (z(f). r(t+ E)) (6.5)

where:
x(t) 1s the measured variable
E is the embedding time

t is the sampling time

An important parameter, then, is the embedding time
and it depends to a large extent on the system dynamics.
Useful hints in the selection of this parameter is
discussed later.

Takens shows that a closed trajectory in a classical
phase plane will also be closed in pseudo phase plane.
Similarly, trajectories that show certain structure and
shape in the classical phase plane show similar
characteristics in pseudo phase plane. Chaotic
trajectories in one look chaotic in the other. The
principal advantage of Takens method is that a single
observable is adequate to construct the pseudo phase

portrait that can capture the system dynamics, and
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eliminate the need for differentiation or integration of
the observed signal. Furthérmore, Takens proved that any
representative quantity such a amplitude, velocity,
acceleration, etc. may be plotted in the pseudo phase
plane to study the behavior of a given nonlinear dynamic

system.

G. 2-D PHASE PLANE AGAIN

Now consider the four examples described earlier and
apply the pseudo phase plane method. To illustrate the
effects of embedding time, three different choices of
embedding times are used. The horizontal axis is the
observable and the vertical axis is the first ‘fake’
observable. Figures 6-5(a), (b) and (c) depicts the 32
Hertz example for embedding times of 1, 10 and 19
samples, respectively. Figure 6-5(b) looks similar to
Figure 6-4, the classical phase plane.

Figures 6-6(a), (b) and (c) represents the Harmons
signal. A periodic signal is known to yield a closed
orbit in the phase plane. Further, the orbit seems to
cross over itself at several points.

Figures 6-7(a), (b) and (c) shows the Actual signal.
The trajectory forms orbits which never repeat or close.
The accelerometer data writes on top of itself to form a

tangle of trajectories. The 2-D phase plane portrait
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appears inadequate to discern all of the relevant
information.

Figures 6-8(a), (b) and (c) represents the Random
signal. Regardless of the embedding times, the
trajectories are seen to fill the phase plane completely.

The subroutine PPLANE of the program CHAOS produced

Figures 6-5 to 6-8.

H. EMBEDDING TIME

The issue regarding an appropriate choice for
embedding time is addressed here. A toco small embedding
time, ’'E’, yields a phase portrait that is stretched out
along the line x = y. A toco large embedding time, in the
case of a signal with a predominant frequency, yields a
phase portrait stretched out along the line x = -y. One
should compare several embedding times before settling on
any particular choice of embedding time. This choice
appears to be about one-quarter of the period of the most
predominant frequency of the observable. 1In the
preceding examples, 10 samples for embedding time is
selected (sampling rate of 1230 Hertz, predominant

frequency of 32 Hertz).
I. ENERGY IN THE PHASE PLANE

The phase plane constitutes a geometric method that

provides a direct visual indication of the vibratory
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energy in a signal. The greater the distance between the
trajectory and the origin of the phase plane, the greater
the magnitude of vibrations. With appropriate scaling,

the area enclosed by the trajectories in the phase plane
is a measure of the energy in the signal. This measure

of energy is the same as the variance in the time domain
or the area under the Power Spectral Density plot in the

frequency domain.

J. 3-DIMENSIONAL PHASE SPACE

There are two ways of constructing a 3-dimensional
(3-D) phase sgace. The first method is an extension of
the pseudo phase space method, which is illustrated by

the following example:

Series 1 1.43, 1.40, 1.35, 1.32, 1.28, 1.31,
Series 2 1.35, 1.32, 1.28, 1.31,
Series 3 1.28, 1.31, .

Series 1 is the observable, while Series 2 is a ’fake’
observable formed by displacing the time series by two
samples. The embedding time is, in this example, equal
to two samples. Series 3 is a fake observable by
displacing the second series by two samples. The data
points in the three series yield the coordinates along 3

axes. To form a trajectory in 3-D phase space plot
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successive columns of triples. In this exa'ple, the
first triple is (1.43, 1.35, 1.28). Takens’ method may
be extended for any number of dimensions of pseudo phase
space.

Mathematically, this process may be represented as:

(r(),r(d = B)oa(t =28), - x(t—(m = 1)E)) or

(rit et Byortt 4 28 - (A o= DY)
(6.6)

where ’'nm’ 1s the number of embedding dimensions.

F.gures 6-9, parts (a) through (d) presents the four
examples. The subroutine PSPACE of the program CHAOS was
used to produce this graph. The 32 Hertz signal in 3-D
phase space is similar to that in the 2-D phase plane.
The Harmons signal trajectories now form orbits which do
not cross as in the 2-D phase plane. This example shows
that in general, the effect of a higher dimensional
pseudo phase space is to untangle the trajectories. The
trajectories of the Actual signal form a small loop like
shape. This is known as an "attractor." The
trajectories are attracted to a small bounded space whose
volume is small in comparison to the volume of the entire
phase space. Although, the exact location of the a
trajectory is unpredictable, it remains within the

attractor. The Random signal is seen to fill up the
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entire phase space. Further, for the 32 Hertz and
Harmons signal, the orbits depicted are also attractors
whose volume is very small.

An attractor is what the behavior of a bounded
dissipative system settles down to, or is attracted to.
A system may have several attractors. For example,
consider an old fashioned grandfather pendulum clock.
The clock pendulum has two attractors. Small
displacements of the pendulum from its initial rest
position will result in a return to rest position. This
rest position is a "point attractor." However, with
large displacements the clock begins to tick as the
pendulum executes a stable oscillation or a "limit cycle"
which is the other attractor.

In the case of a pendulum clock example, different
initial conditions asymptotically approach to different
attractors. The set of initial conditions or points in
phase space that evolve to an attractor is its '"basin of
attraction." Small displacements form one basin of
attraction while large displacements form another basin

in case of the pendulum clock [Ref 6.7].

K. POINCARE SECTION
Before discussing a second way of constructing a 3-D
phase space, consider the concept of a Poincare section

(PS). One method to construct a PS is by positioning a
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2-dimensional surface in a 3-D phase space and observing
the points where the trajectory pierces this surface.

The PS takes a slice through the attractor, revealing the
internal structure at this location. For given
attractor, an infinite number of PS are possible, since
an infinite number of locations and orientations on the
attractor are available. An important question in
constructing a PS is its location on the attractor.

In Figure 6-9(a), a 2-D plane is constructed for the
32 Hertz signal in 3-D phase space. This 2-D surface is
an example of a PS. Figure 6-10, parts (a) through (4d)
are PS of the previous figure, all at the same location
as in Figure 6-9(a). The subroutine PCARE2 of the
program CHAOS generated the graphs in Figure 6-10.
Observe tnat a periodic signal yields only one point on
the PS and a signal with many harmonic components
produces a finite number of points in a PS. The Actual
signal produces intersections that are bounded to a small
area while the Random signal intersections fill the
entire PS plane.

This figure also illustrates another point. The
points on the PS are the intersection of the trajectories
with the plane, going in the same direction. The choice
of the direction of the trajectories is yet another
option available to the investigator in constructing the

PS.
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A well defined bounded attractor on a PS is a
distinct indication of the presence of chaos. The
structure of the attractor reveals the characteristics of

system’s nonlinear dynamics [Ref 6.1].

L. TOROIDAL PHASE SPACE

Now consider another method of constructing a 3-D
phase space. To distinguish this approach from the
pseudo phase space method, this method is referred to as
the "Toroidal Phase Space!” or "Torus" method. As the
first step of construction, consider Figure 6-11(a) which
shows the 32 Hertz signal with an embedding time of 10
samples. The time is recognized as the third axis,
instead of the third ’fake’ observable used in 3-D pseudo
phase space. The trajectory is seen to wrap around the
surface of a horizontal cylinder. Each wrap takes the
same interval of time, namely, 1/32 second. This time
interval is the "Period'" of the trajectory. Figure 6-
l11(a) presents a small duration of the 32 Hertz signal.

In Figure 6-11(b), the time axis is bent around to
form a closed cylinder, or a torus. One revolution
around the torus plots the entire 5 seconds of the 32
Hertz signal. A second closed circle inside the
trajectories is an axis line and it represents the point

of no vibration. The labeling of azimuth position about
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the torus is similar to the labeling of helicopter rotor
blade azimuth position.

Speeding up the rate of plotting the trajectories
results in figure 6-11(c). One trip around the torus now
takes exactly 1/32 second. This rate of plotting results
in the trajectories retracing themselves. In this case,
the trajectories revisit the exact same space, called an4
attractor.

Figure 6-11 introduces a new parameter - the rate at
which to plot around the torus. This parameter is not
available in 3-D pseudo-phase-space. Classically, the
plotting rate is fixed at a constant rate. A new
concept, introduced here, is to synchronized the plotting
rate with that of the forcing function, in this case the
helicopter rotor. When the rate of plotting is
synchronized with the rotor, the resulting trajectories
are in the "Rotor time domain" while plotting the
trajectories at a constant rate results in the "Clock
time domain."

Figure 6-12 depicts the four examples. The plotting
rate in parts (a), (b) and (d) is 1/32 second for one
revolution around the torus, or 32 Hertz. 1In part (c),
the plotting rate is in the rotor time domain and the
plotting rate is exactly four times around the torus for
each rotor revolution. The embedding time is selected as

10 samples in all the cases. The 32 Hertz signal results
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in a single line attractor. The Harmons signal
appearance is similar to its appearance in 3-D phase
space. The Actual signal yields an attractor. The
Random signal appears to fill the torus.

The subroutine TORUS in program CHAOS was developed

for the analysis described and it produced Figure 6-12.

M. POINCARE SECTIONS AGAIN

A plane is shown in the Figure 6-12(a), the 32 Hertz
example in toroidal phase space. This 2-D surface is
another example of a Poincare section (PS). The
orientation of the 2-D plane is now fixed to pass through
the vertical axis of _‘he torus. A PS now corresponds to
strobing the data at a specific azimuth angle and
plotting the points where the trajectory pierces this
section. The azimuth angle at which to take the PS is a
parameter that must be selected.

Figure 6-13, parts (a) through (d) presents the PS of
the previous figure taken at an azimuth angle of 270
degrees.

The subroutine PCARE of the program CHAOS was

developed to obtain the Poincare sections.

N. VAN DER POL PLANE

Several PS taken at different azimuth angles of the

torus reveal the internal structure of an attractor.
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Rather than constructing an infinite number of PS, the
"Van der Pol'" plane captures the internal structure in a
single plane. Figure 6-14 presents the Van der Pol
construction [Ref 6.8]. This process is equivalent to
untwisting the trajectories on the 2-D phase plane at a
prescribed rate. Mathematically, the Van der Pol plane

is computed by the following transformation:

"= Ncos{wt) — Ysin(wt) (6.7)

Vo= Ysin(wt) 4+ Yeos(w!)

where:

X’ and 'Y’ are the coordinates of a trajectory in
the 2-D phase plane.

U’ and 'V’ are the coordinates of a trajectory in
the Van der Pol plane.

‘w’ is the rate of untwisting.

The rate of untwisting is similar in nature to the
plotting rate around the torus. The untwisting rate may
either be at a constant rate or at a rate synchronized
with that of the rotor.

The Van der Pol plane method works only for signals
with a single predominant frequency. Three of the

examples have a strong 32 Hertz component.
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Figure 6-15 presents the four examples plotted in the
Van der Pol plane. Subroutine VDP of the program CHAOS

was developed to produce this transformation.

O. HIGHER DIMENSIONAL POINCARE SECTIONS

Takens shows that there is no limitation on the
number of fake observables available from a given time
history. To generate a 3-D Poincare section (PS) from a

4-D hyperspace, consider the following series of data:

Series 1 1.43, 1.40, 1.35, 1.32, 1.28, 1.31,
Series 2 1.40, 1.35, 1.32, 1.28, 1.31,
Series 3 1.35, 1.32, 1.28, 1.31,

Series 4 1.32, 1.28, 1.31,

Again, the first series is the observable, while the
second, the third, and the fourth series are fake
observables formed by displacing the time series by an
embedding time of one sample. The data in the four
series provide the four coordinates in the 4-D
hyperspace. These are referred to as '"time delay
coordinates." A column represents a point in 4-D
hyperspace. To generate a PS, select a coordinate axis
(say, series 3) and a coordinate (say, 1.28). Then
Series 3 is scanned to yield all the points that equal

1.28 (interpolating Series 3 as regquired). A PS is then,
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a plot in 3-D space of the respective triples of the
points for Series 3 equal to 1.28. One such triple is
(1.35, 1.32, 1.31). Thus, additional parameters for
investigation are the choice of coordinate axis and the
desired value for the PS.

Figure 6-16 shows the 3-D PS for the 32 Hertz,
Harmons, Actual and Random signals, respectively. The
results are similar to the earlier PS. Subroutine PCARE3
of program CHAOS was developed for this higher

dimensiocnal PS.

P. LYAPUNOV EXPONENTS

The geometric and topological methods discussed thus
far are mainly gqualitative in nature. One of the
quantitative tests available is to compute the "Lyapunov
Exponents" of the system. A Lyapunov exponent measures
the exponential attraction or separation, over long
periods of time, of two adjacent trajectories in phase
space with different initial conditions. The Lyapunov

exponent may be defined as:
d(t)y = d 2™ (6.8)

or

L =log, (igl) (6.9)
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where:

’d’ is the initial distance between the two
trajectories.

’d(t)’ is the distance between them at a later time.

'L’ is the Lyapunov exponent.

Note that the logarithm is in base 2, and hence ‘L’ is in
units of bits/sec.

A positive exponent means the later distance, ‘d(t)’,
will be larger than the initial distance, ‘d’. A zero
exponent indicates that there is no change and a negative
exponent indicates that ‘d(t)’ is smaller than ’d4d’.
Figure 6-17 illustrates these concepts.

Alternatively, the exponent gives a measure of the
rate of information lost by the signal over an extended
periods of time in terms of bits of information per
second. Further, a positive exponent is yet another
indication of inherent unpredictability and resulting
chaotic behavior in the systenmn.

Algorithms are available to calculate these exponents
from the measurement of a single observable by
constructing a pseudo phase space. The method used here
is due to Wolf, el al. [Ref 6.9]). Other methods, but not
used here, are due to Eckermann, el al. [Ref 6.10] and

Tongue and Smith [Ref 6.11], among others.
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The individual exponent calculations vary widely
depending upon the point in the data record from where
the initial distance, ’‘d’, is measured. Figure 6-18,
produced by subroutine LAP of the program CHAOS,
illustrates how the exponent calculation varies with the
initial point. The example used here is the Actual
signal. A new exponent was estimated at intervals of
every 50 data samples. Figure 6-18 plots over 300
estimates (50 samples x 300 estimates = 6000 total data
points). Figure 6-19 shows the evolution of the average
Lyapunov exponent from these estimates. The asymptotic
value of 0.5 is obtained for the averaged exponent.

The averaged Lyapunov exponents for the four examples

calculated by Wolf’s method are given below:

32 Hertz signal - 0.03 bits/sec
Harmons signal - 0.05 bits/sec
Actual signal 0.3 to 1.7 bits/sec
Random signal + 0.3 bits/sec

The Lyapunov exponent calculation varied considerably for
the Actual signal. Small changes in input parameters
result in large changes in the final averaged exponent.
Periodic attractors, such as the 32 Hertz and Harmons
examples, have only negative or zero exponents. This

indicates that their motion is predictable. Furthermore,
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changes in input parameters had little effect on the
final exponent estimate.

An equal number of trajectories diverge and converge
in a random process. The Random signal should have an
averaged exponent near zero, even though a random process
is unpredictable. The small positive exponent seen here
may be a result of the limited data file (6150 points)
used in the calculation. Changes in the input parameters
had little effect on the exponent estimate.

Finally, 1-D systems have only a single Lyapunov
exponent, while 2-D systems have two Lyapunov exponents,

and so on.

Q. STRANGE ATTRACTORS

Consider the case of a 3-D system with one positive
Lyapunov exponent and the rest being zero or negative.
The system 1is also considered as being dissipative. A
dissipative system is any system, such as a helicopter,
which loses energy with time due to friction and other
nonconservative forces. These systems stay in motion by
receiving energy from an outside source. In the case of
a helicopter, this energy is obtained from the rotor.

Study Figure 6-20 closely. The multidimensional
attractors describing dissipative systems become
effectively one-dimensional. In dissipative systems, the

attractors have bounded volumes that shrink with time.
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Although the volumes always shrink, the distance between
neighboring trajectories may shrink or expand at
different rates in different directions. The Lyapunov
exponents describe this rate of shrinking or stretching.
The direction of expansion defines a one-dimensional line
that contains the attractor. The attractor shrinks in
some directions and grows in others. This exponential
growth 1s a local feature because the physical system is
bounded. Hence, two trajectories on a chaotic attractor
cannot diverge exponentially forever. Consequently the
phase space in the attractor folds over onto itself. So,
although the trajectories follow increasingly different
paths, they eventually must pass close to one another
again. Then the attractor, while thin, becomes complex
in nature. The process of stretching and folding repeats
itself, creating folds within folds. Attractors with
this structure are called as "strange attractors."
Figure 6~20 sketches the formation of a strange
attractor.

In 3~-D phase space, a strange attractor appears like
a collecticn of infinite number of sheets or parallel
surfaces. The separation of the surfaces is by distances
that approach the infinitesimal. The appearance of a
strange attractor in a Poincare section is a CERTAIN sign
of chaos. When examined on a smaller scale, a strange

attractor has a self similar structure. 1In other words,
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magnifying any small part of the Poincare section reveals
even more sheet like layers. 1In order to characterize
such Poincare patterns, the term "fractal" is used [Ref
6.12].

However, finding strange attractors in actual
experimental data is extremely difficult. 1In all but the
simplest systems, the stretching and folding of phase
space occurs in many directions. This interference makes
observation of a strange attractor difficult in an

experimental signal [Ref 6.13 and 6.14].

R. FRACTAL DIMENSION

Another quantitative measure of chaos is to conmpute a
"fractal dimension," if it exists. The fractal dimension
gives a the lower bound on the number of essential
variables needed to model a systems dynamics. For
example, if the fractal dimension is ,say, 6.5 for some
system, then the minimum number of first-order
differential equations required to simulate the dynamics
of this system is 7. Furthermore, non-integer values for
fractal dimension indicate the existence of a strange
attractor, Berge (Ref 6.15].

There are at least six different ways to classify the
nature of fractal dimension. The dimension discussed

here is known as "correlation dimension". For further

discussion on the different types of dimension, see for




example, J. D. Farmer, et al. [Ref 6.16)]. Other r1elevant
works are Malraison, et ai. [Ref 6.17] and Froehling, et
al. [Ref 6.18]. The correlation fractal dimension, ’‘d’,

is defined by the following equation:
Ciry =1t (6.10)

where:

‘C(r)’ 1is the probability of the attractor within a
circle, sphere or hypersphere of radius ‘r’.

‘r’ 1s the radius of a circle, sphere or hypersphere.

’d’ is the fractal dimension.

Take the natural logarithm of both sides of equation 6.10C

to solve for '4d’:

nor

r—i

. I i
,izi)xn(~m-> (6.11)

Following Grassberger and Procacia [Ref 6.19), a
procedure to compute the correlation dimension is
described. Consider Fiqures 6-21, the 32 Hertz signal in
the 2-D phase plane. Remember this signal was digitized.
Start with a point on the attractor and calculate the
number of points inside a circle of radius ‘r’.

Calculate the probability ‘C(r)’ by dividing this ruaber

of points by the total number of points that make up the
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attractor. Repeat this procedure for several points
along the attractor. Then compute ’C(r)’ for several
values of ‘r’. The slope of the log (C(r)) versus log
(r) curve gives the correlation dimension ’d’. The
validity of this power law is limited to values of ’‘r’
reasonably small compared to the size of the attractor.
In the 32 Hertz example, the dependence is linear and
hence ’'d’ is equal to 1.

To obtain the fractal dimension of the attractor, the
procedure has to be applied in 2-D, 3-D, 4-D, etc. pseudo
phase space. The asymptotic value of the correlatioun
dimension is the fractal dimension of the attractor.

This procedure is given by:
1 N
('{7'):4.“”].'f‘z Hir —ix, —x.1) (6.12)

where:

'H’ is the Heavside step function.

"]|x - x||’ is the Euclidian distance between the
roints.

and ‘N’ is the total number of points.

Figure 6-22 summaries the results for the four
examples. The fractal dimension, ’d’, for the 32 Hertz
signal remains at 1 regardless of the dimension of the

phase space. 1In contrast, the fractal dimension of the

89




Random signal roughly remains equal to the dimension of
the phase space. The Random signal can be considered to
be the superposition of an infinite number of independent
oscillators. Their trajectories will densely cover any
higher dimensional phase space.

As long as the fractal dimension is roughly equal to
the dimension of the phase space used for the
calculation, the attractor lies in a higher dimensional
phase space. On the other hand, once the fractal
dimension is independent of the dimension of the phase
space used for the calculation and is non-integer, the
signal 1is characterized as chaotic and accompanied by a
strange attractor [Ref 6.15] & [Ref 6.19].

The subroutine COD of the program CHAOS was developed
to compute the fractal dimension discussed here and

produced Figure 6-21 and the results of Figure 6-22.

S. SUMMARY

In this chapter, geometric and topological methods of
Chaos are described. Determination of the presence of
Chaos from the analysis of a times series alone is
difficult. No single approach provides a conclusive
evidence of chaos. They all must be used together, each

providing evidence to suggest the presence of Chaos.
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Table 6.1

Coefficients Used for Harmons Example (Equation 6.2)

i ajz Wi 85

1 0.014 8.0 345

2 0.014 16.0 255

3 0.009 24.0 076

4 0.228 32.0 296

5 0.025 40.0 033

6 0.017 48.0 014

7 0.025 56.0 034

8 0.044 64.0 225

9 0.013 72.0 352

10 0.011 80.0 195

1l 0.012 38.0 187

12 0.020 86.0 106
Note: a, is in units of "g’s"
w. 1s in units of hertz

and 6; is in units of degrees.
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Figure 6-2. Fourier Power Spectrums. (a) 32 hertz.
(b) Harmons. (c) Actual. (d) Random. Horizontal dashed
line indicates instrument and calculation noise. Units
of part (c) is in "g’s" squared. Transformation used
4096 points and a Hamming window.
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Figure 6-3. Determination of Calculation Noise.
Fourier spectrum for Actual example. The anti-alaising
filter removed all signals above the frequency of 250
hertz. Calculation noise is equal to the output of the
fourier transform above 250 hertz.
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Figure 6-4. 2-Dimensional Phase Plane Portrait of a
Pendulum. The horizontal axis plots amplitude and the
vertical axis plots velocity of the pendulum’s swinging.
One point on this plane contains all the information
about the state of the pendulum at any instant of time.
Connecting the points yields a smooth circle which
represents trajectory of the pendulum. This pendulum is
frictionless.
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Figure 6-5. Pseudo~phase-plane representation of 32
hertz example. Presented for three different choices of
embedding time. (a) 1 sample. (b) 10 samples. (c) 19
samples. Part (b) looks just 1like figure 6-4.
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Figure 6-6. Pseudo-phase-plane representation of
Harmons example. Presented for three different choices
of embedding time. (a) 1 sample. (b) 10 samples. (c)
19 samples.
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Figure 6-8. Pseudo-phase-plane representation of
Random example. Presented for three different choices of
embedding time. (a) 1 sample. (b) 10 samples. (c) 19
samples.
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Figure 6-9. 3-Dimensional Phase Space. (a) 32
hertz. (b) Harmons. (c) Actual. (d) Random. Embedding
time is 10 and 20 samples for axis labeled F(T-10) and
F(T-20) respectfully. The construction of a Poincare
section is illustrated in part (a). The section consists
of those points where the trajectory pierces the plane in
the same sense (direction).
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Figure 6-10. Poincare Sections of 3-D Phase Space.
Poincare sections of the examples presented in Figure 6-
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Figure 6-13. Poincare sections of Figure 6-12.
sections are at an azimuth angle of 270 degrees.
Embedding time is 10 samples. (a) 32 hertz. (b)
Harmons. (c) Actual. (d) Random.
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Figure 6-14. construction of the van der Pol plane.
(a) The Actual signal plotted in toroidal phase space
with plotting rate synchronized with the rotor. (b)
Poincare sections taken at 180, 270 and 0 degrees
azimuth. (c) Poincare sections rotated; the 180 degree
azimuth section is not rotated, the 270 degree azimuth
section rotated 90 degrees, the 0 degrees azimuth section
rotated 180 degrees. (d) Sections combined to form Van
der Pol plane.
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Figure 6-15. The Van der Pol Plane. (a) 32 hertz.
(b) Harmons. (c) Actual. (d) Random. Rate of
untwisting is 32 hertz for parts (a), (b) and (4d).
Synchronized with rotor for part (c). Embedding time is
10 samples.
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3-D Poincare Sections of 4-D

The section is formed by strobing the fourth
F(T-30),
is 10 and 20 samples.
(d) Randonm.

at a value of 1.0.
(a) 32 hertz.

Embedding time
(b) Harmons. (c)
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Figure 6-17. Lyapunov Exponents. Sketch of the
change in distance between two nearby orbits used to
define the largest Lyapunov exponent.
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Figure 6-18. Instantaneous Lyapunov exponent for
the Actual signal. The horizontal axis, Propagation
Time, refers to the position in the data record of the
initial point. Conditions were level flight, 60 knots
and HHC off.
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Figure 6-20.

Formation of a Strange Attractor.

Start with a disk which represents trajectories very
close to each other. The trajectories are traveling in
the ’y’ direction. They diverge chaotically in the ‘2z’
direction, but converge in the ’‘x’ direction. The 2-D
disk collapses to a 1-D line. Since the system is
bounded, the trajectories can not diverge exponentially
forever in the 'y’ direction. They fold over. This

folding process continues resulting in the formation of
an strange attractor as shown on the right.
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Figure 6-21. Computation of Fractal (Correlation)
Dimension. 32 hertz signal used as an example. (a) Draw
a circle of radius ’‘r’, centered about an arbitrary point
on the attractor. Remember the signal was digitized.
Determine number of digitized points inside the circle.
Call this number "correlation." (b) Repeat for many
radius and for many arbitrary points. Plot log
correlation versus log radius. Slope is fractal
dimension. In this case, 1.

112




Dependence of Fractal Dimension on
Phase Space Dimension

Computed Correlation Fractal Dimension
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Figure 6-22. Fractal Dimension. Plot of fractal
dimension versus dimension of phase space. Results for
the 32 hertz, Harmons, Actual, and Random sample
presented.
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VII. NATURE OF THE HHC CONTROLLER TRANSFER MATRIX

A. PURPOSE

This chapter shows how the transfer matrix in the HHC
control law is either linear and repeatable or non-linear
and non-repeatable depending on how vibrations are

defined.

B. TRANSFER MATRIX
The HHC control law from the third chapter is

repeated here:
z=2z0+Tu (3.1)

All closed loop controlled HHC wind tunnel and flight
tests to date have used this control law. The guesticn
unanswered by present research is whether the transfer
matrix, ’‘T’, is either linear or nonlinear. Also,
whether it is either repeatable or non-repeatable.

‘T’ is repeatable if the values for all 36 elements
of the matrix remain the same each time they are measured
under similar flight conditions. It is non-repeatable if
the 36 elements of the matrix change significantly each
time an estimate is made for the matrix, even though test

flight conditions, such as airspeed, do not change.
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If 'T’ is repeatable, then the question remains
whether it may be treated as linear or non-linear. 'T’
is linear if small changes in test conditions result in
small changes in the values of its elements. For
example, if ‘T’ is linear, the values of ‘T’ measured at
70 knots should lie between the values of ‘T’ meesured at
60 and 80 knots.

The ‘2z’ and ’‘z,’ vectors have six elements each.
These elements represent the cosine and sine components
of lateral, vertical and longitudinal accelerations at a
single freguency and are in units of "g’s". These
vectors represent vibrations at a specific location on
the helicopter. For the OH-6A, the frequency was at 32
hertz and the location was underneath the pilot’s seat.

The 36 elements of the ‘T’ matrix relate swashplate
excitation to the resulting helicopter vibration. Each
element in the ‘T’ matrix is in units of the ’‘z’ vector

divided by units of the ‘u’ vector. 1In the case of the

OH-6A, the units for the ’T’ matrix were "g’s/inches".

C. SIGNIFICANCE OF POINCARE SECTION AND VAN DER POL
PLANE

A gualitative relationship exists between the ‘¢’
vectors and trajectories drawn in toroidal phase space.
To visualize this, vertical vibrations are considered.

The trajectory of vertical vibration is drawn in toroidal
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phase space with the plotting rate at the ‘z’ vector
frequency, namely 32 hertz. The single attractor
obtained represents two vertical vibration elements of
the ‘2z’ vectors. Taking a Poincare section (PS), or
forming a Van der Pol (VDP) plane from this attractor
reveals details of the relationship. With appropriace
scaling, the horizontal location of the attractor in
either the PS or VDP plane gives the cosine part of the
vertical vibration. The vertical location of the
attractor, again with appropriate scaling, is identified
as the sine part of vertical vibration. Further, in both
the PS and the VDP plane, amplitude of vibration is the
distance from the origin to the location of the
attractor. Phase is given by the angular measure from an
arbitrary axis.

Three PS or VDP planes, one each for lateral,
vertical and longitudinal vibration respectively,
describes the ‘z’ vectors fully. With HHC off, ﬁhe PS or
VDP plane represents the 'z4’ vector, or the baseline
response. With HHC on, the PS or VDP plane represents
the ‘27 vector; or the new system response.

The HHC control law assumes a linear static transfer
relationship (matrix ’‘T‘’) between the commanded
swashplate movement (vector ‘u’) and the fuselage
vibrations (vectors ’‘z’). 1If the ’‘z’ vectors are linear

and repeatable then the ’'T’ matrix is linear and
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repeatable owing to this linear relationship in the
control law. If the ’‘z’ vectors are non-linear and non-
repeatable, then the ‘T’ matrix is non-linear and non-
repeatable. For given test data and flight conditions,
the nature of the ‘T’ matrix can be deduced from the

nature of ‘z’ and 'zo' vectors.

D. COMPARISON OF TWO METHODS OF PLOTTING

Consider the effects of two methods of plotting about
the torus. The plotting rate may either be at a constant
rate or at a rate synchronized with that of the rotor of
the helicopter. Figure 7-1 illustrates these two methods
of plotting using a vertical acceleration signal from
under the pilot’s seat at an airspeed of 60 knots and
with the HHC system off. Plotting about the torus is at
a fixed frequency of 32.36 Hertz in part (a). This
method is referred to as plotting in the '"clock time
domain."

Plotting is synchronized with the main rotor in part
(b). 1In part (b), the trajectory goes exactly 4 times
around the torus for each revolution of the helicopter
rotor. The second method is referred to as plotting in
the "rotor time domain" and the plotting rate in this
case 1is 4P.

Figure 7-2 presents the PS of Figure 7-1 at 270

degrees azimuth. The location of this PS is shown in

117




Figure 7-1(b). The novel method of presentation shown in
Figure 7-2 is believed to be new. The number ‘0’ marks
the first half seconds duration of trajectories which
intersect the PS. The number ‘1’ marks the next half
seconds duration of intersections, the number ‘2’ the
next half seconds duration, and so on - through to the
number ‘9’. Plotting at a fixed 32.36 Hertz rate, part
(a), causes the trajectories to first intersect the PS
near the positive x axis. They then move toward the
negative y axis and then pass by the negative x axis and
end finally near the positive y axis. Plotting at a 4P
rate, part (b), causes all of the trajectories to
intersect the PS near the positive x axis. Observe that
the trajectories form a well defined attractor when
plotting in the "rotor time domain."

In order to interpret the data in Figures 7-1 and 7-2
refer to the Figure 4-3. This figure presents the main

rotor rpm for the same flight test point. The rotational

o

rate of the main rotor varies by an average of 1 to 2
This slight variation in rotor rotational rate accounts
for the difference in the two presentations. (Note: The
main rotor azimuth pipper was used to synchronize the
plots to the rotor time domain. Main rotor rpm was not
used due to large amounts of gquantization errors in that

signal.)
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Figure 7-3 and 7-4 present the lateral and
longitudinal vibrations under the pilot’s seat using both
methods of plotting. They look similar to Figures 7-1

and 7-2.

E. IMPLICATIONS

Defining the ’‘z’ vectors in the rotor time domain
results in a vector whose elements (sine and cosine
components) remain unchanged at one condition of flight.
The ’T’ matrix, then, is predictable and steady. 1In
contrast defining the 'z’ vectors at a fixed frequency
(clock time domain) yields unpredictably in elements that
change with time. The ‘T’ matrix, then, is
unpredictable, even though conditions of flight do not
change.

Figures 7-1 through 7-4 highlight the importance of
defining the HHC control law, equation (3.1), in the
rotor time domain. From a practical standpoint, constant
rotor rpm should be carefully maintained. More
importantly, the HHC actuators MUST move in
synchronization with the main rotor. The HHC computer
must have accurate information on main rotor azimuth

position through a reliable pipper system.
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F. CONCLUSION

The next two chapters will show that the ‘T’ mat;ix
changes in a predictable and linear fashion as both HHC
controller inputs and helicopter airspeed changes. The
HHC control law transfer matrix is both linear and
repeatable if the vibrations, ’z’, are defined in the
rotor time domain. This matrix is non-linear and non-~
repeatable if vibrations are defined in the clock time

domain.
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Figure 7-1. Two Methods of Plotting a Signal in
Toroidal Phase Space. (a) Rate of plotting held fixed at
32.36 hertz. (b) Rate of plotting held at the 4P
frequency, as the rotor’s rotational rate varies the
plotting rate varies. This is referred as plotting in
the rotor time domain. Presented is vertical
acceleration under the pilot’s seat at 60 knots airspeed
with the HHC system off.
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Figure 7-3.
lateral acceleration under the pilot’s seat at 60 knots
airspeed with the HHC system off. Embedding time is 10
samples and Poincare section is taken at 270 degrees

azimuth. (a)
(b)
(c)
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Figure 7-4. Longitudinal Acceleration. Presented

is longitudinal acceleration under the pilot’s seat at 60
knots airspeed with the HHC system off. Embedding time
is 10 samples and Poincare section is taken at 270

degrees azimuth.

(a) Torus at 32.36 hertz plotting rate.
(b) Poincare section of (a).
(c) Torus at 4P frequency plotting rate.
(d) Poincare section of (c).
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VIII. LIMITS OF HHC PERFORMANCE

A. PURPOSE

Chapter 10 demonstrates a limit exists to HHC
vibration reduction. This is attributed to the presence
of chaos. A new technique, explained in this chapter,
allows easy determination of this limit. The method
described here does not require the aircraft to be

equipped with HHC.

B. EFFECTS OF HHC

HHC attempts to reduce a measured variable, usually,
the vibrations under the pilot’s seat. Figure 8-1
illustrates the effect of 0.33 degree lateral excitation
of the swashplate on the 4P vertical and lateral
vibrations under the pilot’s seat. Presented are 14
flight test points for manual controller phases of 0 to
360 degrees, in 30 degree increments. The aircraft is
in steady level flight at 60 knots. This figure shows
the effect of HHC on amplitude of response vibration
only. The horizontal axis shows manual controller
phase. This is the phase of swashplate excitation
relative to rotor blade azimuth position. A zero degree
controller phase means that the swashplate tilts to the

port (left) when the four rotor blades are at 0, 90, 180
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and 270 degrees rotor azimuth respectively. A 180
degree controller phase means the swashplate tilts‘to
the starboard (right) when the four rotor blades are at
45, 135, 225 and 315 degree rotor azimuth respectively.
Further, 360 degrees of manual controller phase relates
only to 90 degrees of rotor azimuth. Tilting of the
swashplate occurs 4 times for each rotor revolution.
This relationship was determined by comparing main rotor
azimuth pipper information with HHC actuator position
information.

Figure 8-2 presents the Poincare sections (PS) of
the same vertical vibration data in Figure 8-1, but
plotted in toroidal phase space. The plotting rate is
at 4P; and, the PS’s are at 180 degrees azimuth.

Figure 8-3 presents the Van der Pol (VDP) plane for
the vertical vibrations. The rate of untwisting is also
set at 4P. Helicopter fuselage vibrations contain a
single predominant frequency, hence the VDP method
works.

The effect of HHC is to move the attractor, in both
the PS and VDP plane, WITHOUT changing its size. The
attractor is bounded to a small volume of the phase
space. Although predictability of the trajectories
within the attractor is not possible, the overall

attractor location is fixed for each controller phase.

126




As the manual controller phase changes, the attractor
shifts its position in the plane.

Minimum vibration is seen to occur at 300 degree
manual controller phase. The attractor location is
roughly centered about the origin. The distance of the
attractor from the origin of the plot is an indication
of the amplitude of vibration. The closer to the
origin, less is the vibration.

Maximum vibration is observed at 90 degrees manual
controller phase. The attractor is at the greatest

distance from the origin, indicating greater vibration.

C. PHASE DETERMINATION

One of the principal advantages of the PS and VDP
plane presentations is that they display amplitude and
phase of the response simultaneously. The distance from
the origin gives the amplitude while the clock position
about the origin indicates the response phase.

The attractor appears to move linearly with changes
in manual controller phase in both the PS and the VDP
plane. 1In both representations, HHC acts as a vector
which moves the attractor from its baseline position.
This vector is referred here as the "HHC vector."

Recall that both the PS and VDP plane are constructed in
pseudo phase space. The orientation of the HHC vector

for each manual controller phase in the PS or VDP plane
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is revealed by inspection. Observing the attractor
position at several manual controller phases fixes a
coordinate axis for the HHC vector. Presented in both
Figures 8-2 and 8-3 is a "HHC coordinate axis" for this
particular aircraft. It shows the direction in which
the baseline vibration attractor will move as HHC is
applied at various controller phase angles.

Once established, the HHC coordinate axis does not
change for different flight conditions, such as airspeed
or sideslip. However, changes in embedding time will
change the orientation of the HHC coordinate axis.
Generally during all the flight tests, only one choice
of embedding time is used in the construction of the
pseudo phase space. Also the HHC coordinate axis may
change for the other two swashplate excitation modes,
namely collective and longitudinal. Flight test data
for these two modes were not available. Finally, note
that only two HHC manual controller phase data samples
are needed to fix the HHC coordinate axis for a given
aircraft for one mode of swashplate excitation.

Given the HHC coordinate axis and one baseline
vibration sample, best phase for HHC may be read
directly from the PS or VDP plane. This is a
significant feature of these methods. Only one baseline
data sample at each test condition gives the phase for

best HHC vibration reduction.
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D. LINEAR MOVEMENT OF THE ATTRACTOR AND THE TRANSFER
MATRIX

The attractor appears to move linearly with changes
in manual controller phase. For example, the position
of the attractor position at 30 degree controller phase
can be interpolated from the attractors at 0 and 60
degrees controller phase respectively. This implies
that the HHC vector movement is linear.

This linear attractor movement means that the
transfer aatrix, ’T’, changes little with HHC swashplate
inputs. Hence, the transfer matrix appears to be

predictable and repeatable for this aircraft.

E. LIMIT OF HHC PERFORMANCE

Consider Figures 8-4 and 8-5, which are the VDP
representations of lateral and vertical vibration at the
pilot’s seat. Figure 8-6 presents the flight test
points considered. Both Figures 8-4 and 8-5 present
baseline response in the left column and HHC-On response
in the right column. The first row is vertical
vibration and the second row is lateral vibration. The
longitudinal vibration is not available because of
improper signal conditioning of that signal during the
flight test.

Figure 8-4 compares baseline with Open Loop HHC.

Note that with HHC-On, the attractors are not exactly at
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the origin of the phase plane. This implies that the
vibration was not reduced to a minimum. The HHC moves
the attractor in the VDP plane without changing its
size.

A comparison of baseline with Closed Loop HHC is
given in Figure 8-5. Figure 8-6 shows that this is the
best reduction achieved with HHC in the entire flight
test program. The best HHC performance is with
simultaneous longitudinal, lateral and collective
swashplate excitation in an optimal combination. The
attractor is roughly centered at the origin of the phase
plane showing that the HHC system reduced the vibration
to the minimum possible. The size of the attractor
remains unchanged as compared to the baseline case.

The size of the attractors may be viewed as a limit
of HHC vibration reduction. The size appears to be
independent of improved controllers, actuators,
computers, etc. and therefore, vibration level may not
be reduced any further. 1In order to determine the best
HHC performance, only one sample of baseline (HHC off)
data of the measured variable is needed. 1In other
words, maximum vibration reduction obtainable from a
given HHC system may be known before turning on that
system or even installing it. This knowledge allows a
si-nificant reduction in the time required to determine

controller characteristics and HHC performance levels.
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This further avoids wasted resources in trying to
accomplish vibration reduction beyond the limit
indicated in baseline flight testing. Remember that
with appropriate scaling, the area enclosed by the
trajectories is a measure of the vibratory energy in a
signal.

Furthermore, since both the PS and VDP plane show
amplitude and phase of a vibration at a single
frequency, these methods can monitor the performance of
a HHC system during flight test. Unlike Fourier
analysis, these methods can be implemented real time
since all that is required is the observable and a time

delayed ’'fake’ observable.

F. SUMMARY

The Poincare section and Van der Pol plane methods
will reduce flight test requirements by showing limits
of HHC performance. They also allow rapid determination
of best phase for HHC controller and rapid determination

of maximum vibration reduction achievable for a given

aircraft.
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Figure 8~1. Variation

of HHC Performance with

Controller Input Phase. Conditions are level flight at
60 knots with 0.33 degrees of lateral 4P excitation of

the swashplate. [from Wood
permission of author].

et al. (1985), reprinted with
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Figure 8-2. Poincare Sections for Phase Sweep of
Lateral Mode. Poincare section of toroidal phase space
with section taken at 180 degree azimuth and rate of
plotting is at 4P. Conditions are level flight at 60
knots with 0.33 degrees of lateral 4P excitation of
swashplate. The manual controller phase is indicated on
each section. Embedding time is 10 samples.
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Figure 8-3. Van der Pol Planes for Phase Sweep of
Lateral Mode. Conditions are level flight at 60 knots
with 0.33 degrees of lateral 4P excitation of swashplate.
The manual controller phase is indicated on each plane.
Rate of untwisting is 4P for the Van der Pol plane.
Embedding time is 10 sarples.
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(a) VAN DER POL PLANE (b) VAN DER POL PLANE
1.0

(C) veanper PoU PLAKE (d) van erPoL Peane

Figure 8~4. Comparison of Van der Pol planes with

Open Loop Control of HHC. Conditions are level flight at
100 knots. For HHC On the conditions are 0.33 degrees of
lateral 4P excitation of swashplate at 270 degrees of
controller phase. Rate of untwisting is 4P for all Van
der Pol planes. Embedding time is 10 samples.

(a) Vertical acceleration with HHC off.

(b) Vertical acceleration with HHC on.

(c) Lateral acceleration with HHC off.

(d) Lateral acceleration with HHC on.
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Figure 8-5. Comparison of Van der Pol planes with
Closed Loop Control of HHC. Conditions are level flight
at 100 knots. Rate of untwisting is 4P for all Van der
Pol planes. Embedding time is 10 samples.

(a) Vertical acceleration with HHC off.
(b) Vertical acceleration with HHC on.
(c) Lateral acceleration with HHC off.
(d) Lateral acceleration with HHC on.
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Figure 8-6. Flight Test Points compared in Figures
8~4 and 8-5. 1In Figure 8-4 comparison was with lateral
mode at 100 knots versus baseline at 100 knots. 1In
Figure 8-5 comparison was with closed loop B36 software
with baseline at 100 knots [drawn by McDonnell Douglas
Helicopter Company, reprinted with permission].
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IX. HHC CONTROLLERS

A. PURPOSE

A new teclinique to determine the minimum HHC
controller requirement for any helicopter from a few
minutes duration of flight test data is described. For
the OH-6A, a scheduled gain controller is shown adequate
for steady level flight. This new method does not need

the HHC system installed on the aircraft.

B. REVIEW ON TYPES OF CONTROL SYSTEM

The characteristics of the ‘T’ matrix and its changes
with flight conditions determine the minimum control
system needed for a HHC system. If the ‘T’ matrix is
repeatable and does not change with flight conditions,
then a fixed gain control system is seen to be adequate.
A fixed gain control system uses only one set of values
for the elements of the ‘T’ matrix for all flight
conditions. This system represents an open loop system
where identification of the /T’ matrix is done off line.
This is a very simple control system.

If the 'T’ matrix is repeatable and linear, but
changes with flight conditions, then a scheduled gain

control system is adequate. 1In a scheduled gain control

system, the ‘T’ matrix changes as some measured variable
g




such as airspeed, changes. This system results in a
closed loop with identification of the ’T’ matrix being
done off .ine. The requirement for sensors to measure
the input variables like airspeed, sideslip, etc. make
this system more complex than the fixed gain system.

If the ’T’ matrix is either non-repeatable or non-
linear, then an adaptive gain control system is required.
This system is closed loop and uses on line
identification of the ‘T’ matrix. The resulting control
system is the most complicated system, and sometimes
being unstable, it can easily increase vibrations instead

of decreasing them.

C. DETERMINATION OF MINIMUM CONTROLLER FROM FI /GHT TEST
The previous two chapters demonstrated that the
transfer matrix, ‘T’, is repeatable when measured under
similar flight conditions. Also, the matrix changes

little with changes in swashplate excitation.

Figures 9-1 and 9-2 present acceleration data
measured underneath the pilot’s seat. The left column in
each figure represents vertical acceleration, while the
right column gives lateral acceleration. These figures
show baseline (HHC off) data from 60 to 100 knots at 10
knot increments. Fi.,ure 9-1 presents the PS of the
vibration data, plotted in toroidal phase space. The

plotting rate is selected as 4P and, the PS are at 180
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degrees azimuth. Figure 9-2 presents the VDP plane for
these same vibrations. The rate of untwisting for the
VDP plane is also set at 4P.

Both of these presentations display amplitude and
phase simultaneously. Observe that as airspeed changes
from 60 knots (top row of both figures) to 100 knots
(bottom row of both figures), the amplitude and phase of
the response changes predictably and linearly.

A scheduled gain controller with only two or three
transfer matrices can accommodate the changes shown in
the response. Conversely, for changes of airspeed
limited to 20 knots, a fixed gain controller seems
adequate.

This technique was not evaluated on maneuvering
flight data, as this data was not available. Also
longitudinal vibration data was not analyzed, as signal

conditioning problems gave bad data.

D. FUTURE APPLICATION OF CHAOS METHODS ON HHC

The present method yields rapid determination of
proper HHC controller type for other helicopters. The
recommendation is to use the PS or VDP plane methods in
real time during a few minutes of maneuvering flight.
The controller type can be selected by observing the
movement of the attractor of a measured variable, such a

vertical, lateral, and longitudinal vibration. This
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method, as can be seen, does not need the HHC system to

be installed in the aircraft.

E. SUMMARY

A method is described which allows rapid
determination of proper controller type for any
helicopter. For the OH-6A, a scheduled gain controller

for HHC appears to be adequate for steady level flight.
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(a) T

(b)

{d)

Figure 9-1. Poincare Sections of Pilot Seat
Acceleration Versus Airspeed. Conditions are level
flight with HHC off. Rate of plotting around the
teroidal phase space is 4P and the sections are at 180

degree azimuth. Left column is vertical acceleration and
right column is lateral acceleration. (a) 60 knots. (k)

70 ¥nots. (c) 80 knots. (d} 90 knots. (e) 160 Kknots.




(c)

(e)

Figure 9-2. Van der Pol plane representations of
Pilot Seat Acceleration Versus Airspeed. Conditions are
level flight with HHC off. Rate of untwisting the plane
is 4F. Left column is vertical acceleration and right

column is lateral acceleration. (a)
knots. (c) 80 knots. (d) 90 knots.

60 knots. (b) 70
(e) 100 knots.




Y. THE HUNT FOR CHAOTIC HELICOPTER VIBRATIONS

A. PURPOSE

This chapter is devoted to the in-depth study of
flight test measurements obtained from the OH-6A
helicopter using the dynamical concepts described in
Chapter 6. Classical methods of analysis are also
employed. The purpose of this investigation is to
explore helicopter vikrations for chaos. Historically,
helicopter vibrations are assumed to be periodic.
Understanding the nature ¢of helicopter vibrations may
lead to better methods of vibration reduction and better
design of vibration controllers.

Also, the classification of helicopter vibrations has
important repercussions in helicopter simulations. The
numerical simulation programs like CAMRAD and RACAP
assume that helicopter vibrations are periodic.

Finally, the effects of HHC on chaotic response, if

any, are also addressed.

B. PRELIMINARIES

1. Conditions of Flight
For the present investigation, the conditions of
flight are at 60 knots airspeed with the HHC systen

turned off. This condition is the most benign of the
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available data. Higher airspeeds lead to greater
vibrations. The assumption is that if chaos exists at 60
knots, then, it certainly exists at higher airspeeds.
The OH-6A helicopter is a smooth flying helicopter even
without HHC. So, the presences of chaos in the response
of this helicopter implies chaotic response in other
helicopters which are not as smooth.

During the 5 seconds of test data recording, the
aircraft was reported to be in steady, level flight with
the controls held fixed and the air smooth.

2. Data Presented

The analysis presents the time history, the
Fourier spectrum, the attractor in toroidal phase space,
and a Poincare section of the attractor taken at 270
degrees azimuth. The plotting about the torus is
synchronized with the rotor and is at 1P. That is, the
rotor time domain is employed. The embedding time is 10
samples for the construction of pseudo phase space. A
dashed horizontal line on the Fourier spectrum indicates
calculation noise associated with the Fourier transform.

3. Analysis of Data

The first analysis step is to examine the time
histories for quantization error. An example of a signal
with large quantization error is shown in Figure 4-3. A

large quantization error leads to misleading results in
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the chaos methods. The appearance of chaos in such
signals may be attributed to the quantization error.

Examination of the Fourier spectrum is the second
step. The appearance of a broad spectrum of frequencies,
at least one order of magnitude above calculation noise,
is an indication of the presence of chaos. On the other
hand, if the Fourier spectrum shows the signal as
periodic, then there are no chaotic vibrations.

The third step is the examination of the signal
in toroidal phase space. Trajectories spread out over a
Poincare section is another indication of presence of
chaos.

4. Measurements Presented

Forty nine measurements were available for the
analysis. Appendix B lists these measurements. Although
all the measurements were examined, only a representative

sample are presented here.

C. AIRCRAFT FLIGHT TEST MEASUREMENTS

1. Blade Feathering

The aerodynamic angle of attack that a rotor
blade experiences is a result of a combination of the
blade feathering, blade flapping and rotor azimuth

position, among other parameters. Figure 10-1 presents a

sample of blade feathering data as measured by a

potentiometer. This signal also includes components of
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blade flapping because of cross coupling. 1In other
words, the potentiometer not only moved with blade
feathering, but also moved a small amount with the blade
flapping.

The blade feathering motion is essentially
periodic. The largest component in the response is the
1P or about 8 hertz. The position of the swashplate
controls the blade feathering. The pilot positions the
swashplate through the control stick. Any changes in
control position would cause shifts in the attractor in
toroidal phase space. In this sample, the controls were
held steady by the pilot for the 5 second measurement.

Notice that monitoring blade feathering in
toroidal phase space allows for checking for steady
flight controls; an important parameter for deciding if
the data is good. Normally, the time histories for
longitudinal and lateral cyclic stick position and
collective stick position are monitored to decide if the
data is good.

2. Blade Flapping

Figure 10-2 presents the blade flapping data
measured by a potentiometer. Cross coupling with blade
feathering is present in this data. A small amount of
quantizing error is apparent by viewing the time history
(Note that quantization error may sometimes not be

apparent in the reduced plots presented in this
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dissertation). 1In this figure, about 60 quantum levels
encompass the peak to peak measurement out of the 1024
guantum levels available. However, blade flapping
appears periodic. The largest frequency component is the
1P.

3. Blade Flapwise Bending

Figures 10-3 through 10-5 present the rotor blade
flapwise bending measured by strain gages mounted on the
surface of the rotor blade. The locations of the strain
gages are at 15, 50 and 90 percent, respectively, of the
rotor radius measured out from the rotor hub. The data
from the outboard strain gages are an indication of the
effects of unsteady aerodynamics. The data from the
strain gage at 15 percent rotor radius is an indication
of the flapwise shear forces transmitted to the rotor
hub.

Quantizing error is apparent by examining the
time history of all three signals (only about 50 quantum
levels are used in each). The data from all the three
strain gages are mostly periodic with a small amount of
chaotic or random behavior. The source of this behavior
may be due to the rotor blade’s unsteady aerodynamics.
The frequency content of flapwise bending varies

considerably with rotor radius.
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4., Blade Chordwise Bending

Figure 10-6 presents the rotor blade chordwise
bending measured by a strain gage mounted on the surface
of the rotor blade. The location of the strain gage is
at 17 % of the rotor radius measured out from the rotor
hub. The data from this strain gage is an indication of
the edgewise shear forces transmitted to the rotor hub.
The chordwise bending has a strong 1P and 4P components.
This bending appears more chaotic or random than the
flapwise bending. The source may be the rotor blade
lead-lag damper.

5. Blade Torsion

Figure 10-7 presents rotor blade torsion measured
by a strain gage mounted on the surface of the rotor
blade. The location of the strain gage is at 17 % of the
rotor radius out from the rotor hub. Torsional response
was about a third of chordwise or flapwise bending.
Although the peak to peak amplitude contains only 20
guantum levels, the signal appears to be periodic with
the strongest component at 1P.

6. Rotor Mast Bending

Figures 10-8 and 10-9 present the longitudinal
and lateral mast bending respectively. The rotor mast on
the OH-6A is stationary relative to the fuselage. The
strain gages mounted on the mast and below the rotor head

provide an indication of the vibrations transmitted to
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the helicopter. The data from these strain gages reflect
vibrations after the rotor filtering of the flapwise and

edgewise rotor blade root shears. In theory, only the 4P
component should filter through.

The amplitude of the 4P component was more than
10 times greater than any other frequency in the
spectrum. Other components are also present in the
spectrum. The rotor acts as a filter, but does not
completely filter out all the other frequency components.

7. Pilot Seat Acceleration

Figures 10-10, 10-11, 10-12 depict the vertical,
longitudinal and lateral accelerations, respectively. A
triaxial accelerometer placed under the right pilot’s
seat provides these accelerations. This main objective
of HHC is to reduce this acceleration. These signals
have the smallest quantization error of all the signals
presented. For these signals, over 100 quantum levels
encompass the peak to peak amplitudes.

Observe that chaotic or random vibrations are
indicated in all three directions of acceleration. The
broad band noise is at least 10 times the Fourier
transform calculation noise. At this airspeed, the broad
band noise contained about 34 percent of the total
vibratory energy in the acceleration signals. The 4P

contained the remaining 66 percent. HHC reduced these 4P
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vibrations by 90 percent, which meant a 60 percent
reduction in overall vibrations.

The Poincare sections show a large spread in the
attractors. The distance across the attractors is about
40 percent of peak to peak amplitude in all three
signals. In all of the other signals, the attractors
were compact and the greatest spread was about 20 percent
of peak to peak.

8. Tail Boom Vertical Bending

Figure 10-13 shows vertical bending of the tail
boom. The quantization error is the largest of the data
samples presented. Only 20 quantum levels represent the
entire peak to peak amplitudes. Although quantization
errors are high, the tail boom bending appears periodic
with strong 1 and 4P components.

Although not presented, lateral bending of the
tail boom had roughly the same characteristics as -

vertical bending.

D. SEARCH FOR CHAOS

At this point, the presence of chaotic vibrations is
indicated in a gualitative way in some signals. However,
the observed chaotic vibrations may also be periodic
vibrations with superimposed random vibrations. This
section presents the investigation to characterize

quantitatively the observed chaos.
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The data from the vertical accelerometer located
under the pilot’s seat are examined for evidence of
chaotic vibrations. This signal has the minimum
guantization error of all of the 49 signals that were
made available. It has the greatest indication of
chaotic vibrations. The HHC system was also conceived to
reduce this acceleration. Further, this is the very
signal that was presented as the ‘Actual’ signal in
Chapter 6 (that is why it was an example in that
chapter).

1. The Strange Attractor

Discovery of a strange attractor in a Poincare
section is a sure sign of chaos [Ref 6.15, 6.17, and
6.19]. Figure 10-14 presents a 3-D Poincare section of a
4-D hyperspace for 5 seconds of the vertical .
accelerometer data.

The points seem to form a strange attractor.

They are arranged in the horseshoe like shape ofithe
simple stretching and folding process discussed in
Chapter 6.

Figure 10-14 plots 13 points, far too few to
deduce the presence of a strange attractor. For more
points, steady fight test data is needed for a duration
longer than 5 seconds. However, maintaining a steady
flight condition in a helicopter for longer than 5 to 10

seconds imposes practical difficulties. Wind tunnel test

152




data for durations of about two minutes would be
worthwhile for further studies in chaos.
2. Implications of the Lyapunov Exponent

The presence of chaos in a nonlinear dynamic
system implies a sensitive dependence to initial
conditions. That is, if two trajectories were to start
from neighboring initial conditions in phase space, then
they will move exponentially away from each other after a
certain interval of time. Hence, a chaotic system is
known to yield at least ONE positive Lyapunov exponent
[Ref 6.9].

The size of a positive exponent indicates the
time scale on which a dynamical system becomes
unpredictable. In other words, positive exponents
measure the rate at which a system loses information [Ref
10.1]. In Chapter 6, an averaged Lyapunov exponent
estimate of 0.3 to 1.7 bits/sec was presented for the
vertical accelerometer data. A 10 bit word measured this
signal. This signal, then, represents a system that
becomes completely unpredictable after 6 to 30 seconds,
since no bits of the original information remain after
this time. The small uncertainty in initial measurement
of the signal will cover the entire attractor. Thus all
information about the initial conditicns are lost.

However, the real result is more complex. The

Lyapunov exponent is a time average of many computations
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of Equation 6.9. Figure 6-18 presents the computation of
the instantaneous Lyapunov exponent. The instantaneous
exponent varies wildly with a standard deviation of about
15 bits/sec. The peak to peak exponent is from + 67
bits/sec to - 52 bits/sec. A large positive exponent
implies that the predictability is lost in less than a
1/6 of a second or little more one rotor revolution.

Figure 7-2(b) confirms this result. An
intersection with the Poincare plane is shown for every
quarter revolution of the rotor for the vertical
acceleration trajectories. The trajectories are seen to
intersect the Poincare section at wildly different
locations while remaining within the attractor.

Earlier chapters showed that the helicopter
vibrations are linear and repeatable in the rotor time
domain for a single frequency. In the case of the OH-6A,
the frequency is the 4P. The Lyapunov expcnent
calculations seem to indicate that to suppress vibrations
other than the 4P, an adaptive control system may be
required. Updating of the ’T’ matrix must be done
several times during each rotor revolution. The typical
HHC system is known to update only once a rotor
revolution.

3. Implications of Fractal Dimension
The fractal correlation dimension, discussed in

Chapter 6, was computed for the vertical acceleration
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signal. The results are presented in Figure 6.22. To
obtain an asymptotic value, the pseudo phase space
dimensions were increased. The fractal dimension levels
off at a value of about 6.6. Similar stud.es were
performed for both lateral and longitudinal
accelerations. The final converged values for fractal
dimension are 6.3 and 6.4, respectively. Note that the
time histories for these three signals differ
significantly. Also note that unlike the Lyapunov
exponent algorithm, the fractal dimension algorithm was
not sensitive to small changes in input parameters and
gave consistent results.

The literature reports that obtaining a non-
integer for the asymptotic fractal dimension is a
definitive indication of chaos. A non-integer fractal
dimension also indicates the presence of a strange
attractor {Ref 6.13, 6.15, €.17, 6.19]). However,
recently, Osborne and Provenzale [Ref 10.2] contend that
the sole observation of a non-integer fractal dimension
is not enough to infer the presence of a strange
attractor or chaos. They base their hypothesis on
finding a finite fractal dimension for colored white
noise. Figure 6.22 presents the fractal dimension of the
Random signal (generated by a random number generator).
The Random signal does not reach an asymptotic value.

Note that for a ‘true’ Random signal, generated without

155




the truncation and round-off errors in a computer, the
fractal dimension should increase linearly with
increasing dimension of pseudo phase space (indicated by
the dark line in Figure 6.22).

In Figure 6.22, the fractal dimension curve for
the vertical acceleration data lies below the Random
signal’s curve and above both the 32 hertz and Harmon
signal’s curves. This signifies the fractal dimensicn
calculation for the Actual signal is a result of chaotic
vibrations and not random vibrations.

4. Chaos ?

The evidence points to chaos in some helicopter
vibrations. This conclusion is based on the non-integer
correlation dimension, the observation of broad-band
Fourier spectrum, the presence of a positive Lyapunov
exponent, together with the evidence of a strange

attractor in the Poincare sections.

E. CHAOS IN HELICOPTERS - WHAT DOES IT MEAN ?

The presence of chaos in helicopter vibrations
imposes limits on the ability to predict and control
vibrations using active vibration control systems. A
general belief is that accurate prediction is assumed
possible by gathering and processing enough information.
A simple deterministic system, even with only a few

clements, can result in chaotic behavior. Chaotic
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behavior is a system characteristic and gathering more
information does not eliminate it or increase the
predictability beyond a certain limit.

Many helicopter simulation programs make the
assumption that helicopter vibrations are a sum of
several harmonic functions. The second example used in
the chapter 6, the Harmons example. illustrated the
effect of this assumption. Often, discrepancies between
experimental and computational results may be explained
by the presence of chaos in the experimental results.

Chaos can arise from a finite number of non-linear
deterministic equations. Modeling of random vibrations,
on the other hand, is limited to a statistical
description of the vibrations. The fractal dimension
calculation seems to indicate that at least seven coupled
first order differential equation can model the pilot’s
seat vibration response. Future simulation programs may
more accurately model vibrations by considering the
implications of the nonlinearities present in the systen,
as evidenced by the chaos.

Finally, only non-linear systems are capable of
producing chaos. Typical sources of nonlinearities in
helicopters are unsteady aerodynamic effects, large
structural deformation, nonlinear material behavior, and

control laws. Investigation of helicopter response fcr
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chaos can help identify the effects of these

nonlinearities.

F. HOW ABOUT HHC ?

On analyzing the data with HHC on, HHC did not seem
to change the chaotic behavior of the vibrations.
Figures 8-2 and 8-3 -demonstrated that HHC simply moved
the attractor, but it did not change the size of the
attractor in toroidal phase space.

Figure 10-15 shows the effects of open loop HHC in 3-
D phase space. The data presented is the vertical
acceleration under the pilot’s seat at 60 knots. The
figure presents three conditions; lateral HHC at 270
degree controller phase, baseline (HHC off), and lateral
HHC at 90 degree controller phase. Note that minimum
vibrations were achieved at 270 degrees controller phase
while 90 degree phase lead to worst vibrations. Figure
10-16 presents effects of Closed Loop HHC. The data
presented is the vertical acceleration at 100 knots.
Both figures show the attractor in 3-D phase space and a
Poincare section of this attractor.

The HHC makes the vibrations appear more chaotic in
3-D phase space. In fact, what actually happens is that
the HHC removes the deterministic component (the 4P) from

the vibrations, leaving the chaotic portion behind.
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To further study the effects of HHC, Lyapunov
exponent and fractal correlation dimension were computed.
Both HHC on and HHC off conditions were considered. No
significant changes were noted in both the exponent and
the fractal dimension. The fractal dimension changed
little with HHC on or off, regardless of mode. The
Lyapunov exponent also remained in the range of 0.3 to
1.7. HHC does not appear to change the chaotic nature of

helicopter vibrations either way.

E. SUMMARY
Although helicopter vibrations are generally assumed
to be periodic, the evidence suggests that some

helicopter vibrations are chaotic.
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Figure 10-1. Blade Feathering Angle. (a) Time
history. (b) Fourier power spectral density plot. (c)
Attractor in toroidal phase space. (d) Poincare section
of attractor at 270 degrees azimuth.
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Figure 10-2. Blade Flapping Angle. (a) Time
history. (b) Fourier power spectral density plot. (c)
Attractor in toroidal phase space. (d) Poincare section
of attractor at 270 degrees azimuth.
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Figure 10-3. Blade Flapwise Bending @ 15 %. Blade
flapwise bending at 15 percent rotor radius. (a) Time
history. (b) Fourier power spectral density plot. (c)
Attractor in toroidal phase space. (d) Poincare section
of attractor at 270 degrees azimuth.
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Figure 10-4. Blade Flapwise Bending @ 50 %. Blade
flapwise bending at 50 percent rotor radius. (a) Time
history. (b) Fourier power spectral density plot. (c)
Attractor in toroidal phase space. (d) Poincare section
of attractor at 270 degrees azimuth.
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Figure 10-14. A Strange Attractor. A 3-D Poincare
section of the pilot seat vertical acceleration. The
section is formed by strobing the fourth data array, F(T-
30), at a value of 1.37.
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Figure 10-15. Open Loop HHC in 3-D Phase Space.
Vertical acceleration under the pilot’s seat at 60 knots
airspeed in 3-D phase space {(left column). Poincare
section taken at F(T-20) equal to 1.0 (right column).
Only intersections of trajectories traveling upward are
plotted. Embedding time is 10 samples. Open loop HHC
with lateral only excitation of swashplate and:

(a) 270 degree manual controller phase.
(b) Baseline (HHC off).
(c) 90 degree manual controller phase.
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Figure 10-16.
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XI. CONCLUSIONS AND SCOPE FOR FUTURE RESEARCH

The geometric and topological methods of Chaos theory
were applied, for the first time, to study flight test
data. The data used in this research were from the
McDonnell Douglas OH-6A HHC test helicopter. New
engineering applications of the Chaos methods were
demonstrated with the HHC flight test data.

Although helicopter vibrations are known to be mostly
periodic, evidence of chaotic vibrations was found in
this study. First, the presence of a strange attractor
is shown by computing the Lyapunov exponent and fractal
correlation dimension. Then, a broad band Fourier
spectrum and a well defined attractor in pseudo phase
space were also observed.

An important outcome of this research is that a limit
exists to HHC vibration reduction due to the presence of
chaos. A new technique based on a relationship between
the Chaos methods (the Poincare section and Van der Pol
plane) and the vibration amplitude and phase was
discovered. This newly introduced technique results in
the following: 1) it gives the limits of HHC vibration
reduction, 2) it allows rapid determination of best
phase for a HHC controller, 3) it determines the minimun

HHC controller requirement for any helicopter fronm a few
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minutes duration of flight test data (as an example, for
the OH-6A, a scheduled gain controller for HHC appears to
be adequate for steady level flight), 4) it shows that
the HHC controller transfer matrix is linear and
repeatable when the vibrations are defined in the "Rotor
time domain" and the matrix is nonlinear and
nonrepeatable when the vibrations are defined in the
"Clock Time Domain." These deductions have major
implications in the design and characterization of
controllers.

As a result, this technique will reduce future HHC
flight test requirements. Further, although the
helicopter must be instrumented, the technique does not
require the helicopter to be egquipped with HHC to
determine the limit of HHC performance or to determine
the minimum HHC controller requirement.

These approaches also have potential applications to
other vibration control and flight testing problems.
Further investigation of chaos in helicopter vibrations
is recommended by using several minutes duration of wind
tunnel test data. Also, the methods introduced here
should be tested with maneuvering flight test data in

addition to the steady level flight investigated here.
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APPENDIX A
DESCRIPTION OF COMPUTER CODE

A. PURPOSE

This appendix provides a brief description of the
programs used in this dissertation. All programs were
written in Fortran.. Calls were made to GRAFkit, a suite
of Fortran callable graphical utilities. It is produced
by SCO, Inc. of Louisville, Colorado. GRAFkit is similar
to DISSPLA or PV WAVE.

A users manual, source code listing and source codé
on disk is available by writing the Aeronautics and
Astronautics Department, U. S. Naval Postgraduate School,

Monterey, Ca.

B. PROGRAM CHAOS

The program CHAOS is a calling program for the
subroutines described in this section. It anaiyZes
flight test data using the classical time and frequency
domain methods as well as the new chaos methods. Figure
A-1 presents a flow chart for this program.

1. Subroutine TIMSER

The subroutine TIMSER (for TIMe SERies) plots the
data file as a time series. Different start and stop

times may be selected.
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2. Subroutine TORUS
The subroutine TORUS (for TORoidal phase Space)
plots the trajectory onto 3-D toroidal phase space. Rate
of plotting can be fixed at a single frequency or
synchronized with the helicopter rotor. The resulting 3-
D attractor may be viewed from any perspective.
3. Subvcutine PCARE
The subroutine PCARE (for PoinCARE section) plots
the Poincare section of a toroidal phase space. Rate of
plotting and azimuth angle for the section may be
selected.

4. Subroutine PPLANE

The subroutine PPLANE (for Phase PLANE) plots the
trajectory onto a 2-D phase plane.

5. Subroutine VDP

The subroutine VDP (for Van Der Pol plane) plots
the trajectory onto a Van der Pol plane. The rate of
untwisting is selectable. |

6. Subroutine PSPACE

The subroutine PSPACE (for Phase SPACE) plots the
trajectory onto a 3-D phase space. The resulting 3-D
attractor may be viewed from any perspective.

7. Subroutine PCARE?2

The subroutine PCARE2 (for PoinCARE 2-d section)
plots the 2-D space strobed Poincare section of the 3-D

phase space. The orientation of the section, the
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direction, and the value to take the section are all
selectable.
8. Subroutine PCARE3

The subroutine PCARE3 (for PoinCARE 3-d section)
plots the 3-D space strobed Poincare section of the 4-D
hyper space. The orientation, direction, and value to
take the section at are all selectable. The resulting 3-
D section may be viewed from any perspective.

9. Subroutine PSD

The subroutine PSD (for Power Spectral Density)
compute and plots the Fourier power spectrum. Seven
different window functions are available and the number
of points to transform is selectable.

10. Subroutine STATS

The subroutine STATS (for STATisticS) computes
the time domain statistics. It computes the average,
average deviation, variance, standard deviation,
skewness, kurtosis and maximum and minimum of the data
file.

11. Subroutine LAP

The subroutine LAP (for LyAPunov exponent)
estimates the largest non-negative Lyapunov Exponent from

a time series.
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12. Subroutine COD
The subroutine COD (for fractal COrrelation
Dimension) estimates the fractal correlation dimension
from a time series.
13. Subroutine READATA
The subroutine READATA (for REAdA DATA) reads data
from a file. The data may be differentiated, integrated
or time shifted to form a ‘fake’ observable. The
subroutine counts the number of data points in the file
and also finds the maximum and minimum amplifude. This
subroutine is specialized to read HHC data.

14. Subroutine COLOR

The subroutine COLOR setups the color table for
various printers and screens.

15. Subroutine READPIP

The subroutine READPIP (for READ PIPer) reads a
pipper data file created by the utility program PIPPER.
It passes the time the pipper fires to the subroutines

TORUS, PCARE, and VDP.

C. UTILITY PROGRANMS

1. Program PIPPER

The program PIPPER reads the HHC data pipper data
file (over 6000 data points) and generates a new data

file (less than 50 points) which contains the time the
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rotor pipper fired. The subroutine READPIP reads this
file during the program CHAOS execution.
2. Program_ EQPLOT

The program EPPLOT (for EQuation PLOT) allows
analysis of derived quantities by multiplying, dividing,
adding, subtracting or raising to a power HHC data files.
The results may be immediately plotted or they may be
sent to a file for later analysis by program CHAOS.

3. Program CORRECTDAT

The program CORRECTDAT (for CORRECTion of DATa)
rewrites 307.5 hertz data into the standard HHC 1230
Hertz sampling rate format.

4. Program CHKTIM

The program CHKTIM (for CHecK TIMe) finds the
errors in the data files caused by the McDonnell Douglas
Helicopter Company’s conversion from PCM format into
ASCII format.

5. Program TDATA
The program TDATA (for Test DATA) generates a

file of test data usable by the program CHAOS or EQPLOT.




CHAOS - The Program

Chsos Color

—

T T - I N

Readata § | Timser Torus Pplane Vdp Pspace

Maxmin ! Readpip | Readplip Readpip
|
- L

Figure A-1. Flow Diagram for program Chaos.
Program is written in Fortran. For a copy of the users
manual and source code, Write the Naval Postgraduate
School.
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APPENDIX B
HHC MEASUREMENT LIST

This appendix presents the measurements available
from the OH-6A helicopter. Given are the McDonnell
Douglas measurement number, the measurement name, the
units of the measurement and frequency cutoff of the
anti-aliasing filter (if known). The measurements were
translated into 2SCII files, readable by a VAX computer.
They were stored in data files with ten measurements per
file. For the open luop test data, to store all 49
measurements at each flight test condition took 5 groups
of files. 1In the case of closed loop test data, only 9
measurements were made available. Hence only one datsa
file represented all the data at one flight test
corndition for closed loop data.

Each open loop test data file was given a 7 character
file name. The first letter of the file name indicated
mode (i.e. ‘L’ for lateral excitation), the second number
indicated airspeed (i.e. ‘6’ for 60 knots, ‘1’ for 100
knots), the next two numbers the controller phase (i.e.
'BL’ for baseline, ‘33’ for 330 degrees) and the last
letter indicated which group of files (i.e. ’_A’ for the
first group, ‘_E’ for the last group).

Each closed loop test data file was given a 7

character file name. The first two letters indicated
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mode (i.e. ‘CL’ for closed loop), the third number
indicated airspeed, and the last two or three characters
indicated HHC on or off (i.e. ‘HHC’ for HHC on, and ‘BL’

for baseline).

Open Loop Data

L***_A.DAT
1000 M.R. Pitch Link Load Bl Lbs 250 Hz
1001 M.R. Blade Flapwise Bending € 15% In-1lbs 250 Hz
1002 M.R. Blade Flapwise Bending € 50% Iin-lbs 250 Hz
1003 M.R. Blade Chordwise Bending @ 17% In-1lbs 250 Hz
1004 M.R. Mast Longitudinal Bending € W.L. 68.25 -In-1bs 250 Hz
1005 M.R. Mast Lateral Bending € W.L 68.25 In-1bs 250 Hz
1006 Longitudinal Load Link Lbs
1709 M.R. Mast Longitudinal Bending € W.L. 73.0 In-1lbs 250 Hz
1010 M.R. Mast Lateral Bending € W.L. 73.0 In-1bs 250 Hz
1038 M.R. Pitch Link Load B2 Lbs 250 Hz
L***_B,DAT
1020 M.R. Torque In-1lbs 250 Hz
1022 M.R. Blade Chordwise Bending € 50% In-1bs 250 Hz
1024 M.R. Blade Flapwise Bending € 20% In-1lbs 250 Hz
1C25 M.R. Blade Flapwise Bending € 30% In-1lbs 250 Hz
1026 M.R. Blade Flapwise Bending & 70% In-1lbs 220 He
1027 M.R. Blade Torsion € 17% In-1bs 250 Hz
1028 M.R. Blade Torsion € 5C% In-1lbs 250 Hz
1030 M.R. Blade Flapwise Bending € 90% In-1bs 250 Hz
9017 HHC Left Lateral Actuator Position In-1bs 250 Hz
9026 HHC Right Lateral Actuator Position In-1lbs 75 Hz
L*** C.DAT
9028 HHC Longitudinal Actuator Position In-Lbs °~ 250 Hz
1103 Tailboom Vertical Bending € Sta 211 In-1bs
1104 Tailboom Lateral Bending € Sta 211 In-1bs
1200 Collective Control Rod Load In-1bs
1201 HHC Longitudinal Actuator Load No. 3 Lbs 75 liz
1202 HHC Left Lateral Actuator Load Lbs 75 Nz
1203 HHC Right Lateral Actuator Load Lbs 75 Hz
2002 Boom Static Pressure PSI
2124 Boom Airspeed Knots
3002 Exhaust Gas Temperature Deg C
L***_D.DAT
5008 Vertical Accel - Right Seat G’'s 75 Nz
5009 Lateral Accel - Right Seat G’'s 75 Hz
5010 Longitudinal Accel - Right Seat G's 75 Hz
5052 HHC Longitudinal Feedback Accelerometer G's 250 Hz
5053 HHC Lateral Feedback Accelerometer G's 250 Hz
5054 HHC Vertical Feedback Accelerometer G’s 250 Hz
6007 C.G. Vertical Acceleration Sta 100 G's 6 Hz
6008 C.G. Lateral Acceleration Sta 100 G’'s ¢ Hz
6009 C.G. Longitudinal Acceleration Sta 100 G’'s 6 H=
6010 Vertical Acceleration at C.G. High Frequency G's 25¢C liz
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L*** E,DAT

6011 Lateral Acceleration at C.G. High Freguency G's 250 Hz
6012 Longitudinal Acceleration at C.G. High Frequency G’'s 250 Hz
9003 Lead Lag Angle M.R. 1 Deg 250 Hz
9001 Main Rotor Flap Angle Blade 1 Deg 250 Hz
9002 Feathering Angle M.R.1 Deg 250 Hz
9027 M.R. Azimuth Index Counts 250 Hz
8002 HHC ECU Sine Reference Output Sin/Cos

8003 HHC ECU Cosine Reference Output Sin/Cos

7001 Main Rotor RPM PercentM

Closed Loop Data
CL*HHC.DAT or CH*BL.DAT

5008 Vertical Accel - Right Seat G’'s 75 Hz
5009 Lateral Accel - Right Seat G's 75 Hz
5010 Longitudinal Accel - Right Seat G’s 75 Hz
6010 Vertical Accel at C.G. at high frequency G's 250 Hz
6011 Lateral Accel at C.G. at high frequency G’s 250 Hz
6012 Longitudinal Accel at C.G. at high frequency G's 250 Hz
9017 HHC Left Actuator Position In 75 Hz
9026 HHC Right Actuator Position In 75 Hz
9027 HHC Longitudinal Actuator Position In 75 Hz
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